题目内容

3.应试教育下的高三学生身体素质堪忧,教育部门对某市100名高三学生的课外体育锻炼时间进行调查.他们的课外体育锻炼时间及相应的频数如下表:
运动时间
(单位:小时)
$[0,\frac{1}{6})$$[\frac{1}{6},\frac{1}{3})$$[\frac{1}{3},\frac{1}{2})$$[\frac{1}{2},\frac{2}{3})$$[\frac{2}{3},\frac{5}{6})$$[\frac{5}{6},1)$
总人数10182225205
将学生日均课外体育运动时间在$[\frac{2}{3},1)$上的学生评价为“课外体育达标”.
(1)根据已知条件完成下面的2×2列联表:
课外体育不达标课外体育达标合计
1055
合计
(2)根据列联表的数据,若按95%的可靠性要求,能否认为“课外体育达标”与性别有关?
附:${Χ^2}=\frac{{n{{(ad-bc)}^2}}}{(a+b)(c+d)(a+c)(b+d)}$,其中n=a+b+c+d.
参考数据当Χ2≤2.706时,无充分证据判定变量A,B有关联,可以认为两变量无关联;
当Χ2>2.706时,有90%的把握判定变量A,B有关联;
当Χ2>3.841时,有95%的把握判定变量A,B有关联;
当Χ2>6.635时,有99%的把握判定变量A,B有关联.

分析 (1)由所给频数表知,在抽取的100人中,“课外体育达标”的学生有25人,从而可得2×2列联表;
(2)根据公式计算相关指数Χ2的观测值,比较临界值的大小,可判断按95%的可靠性要求,能否认为“课外体育达标”与性别有关.

解答 解:(1)由所给频数表知,在抽取的100人中,“课外体育达标”的学生有25人,从而2×2列联表如下:

课外体育不达标课外体育达标合计
301545
451055
合计7525100
(10分)
(2)${Χ^2}=\frac{{100×{{(30×10-45×15)}^2}}}{75×25×45×55}=\frac{100}{33}≈3.030<3.841$(17分)(式子列对,计算错误扣3分)
因此没有95%的把握认为“课外体育达标”与性别有关.(18分)

点评 本题考查了列联表及利用列联表进行独立性检验的思想方法,熟练掌握独立性检验的思想方法是解题的关键.

练习册系列答案
相关题目
14.班主任为了对本班学生的考试成绩进行分析,决定从全班25名女同学,15名男同学中随机抽取一个容量为8的样本进行分析.随机抽出8位,他们的数学分数从小到大排序是:60、65、70、75、80、85、90、95,物理分数从小到大排序是:72、77、80、84、88、90、93、95.
(Ⅰ)如果按性别比例分层抽样,男女同学分别抽取多少人?
(Ⅱ)若这8位同学的数学、物理分数对应如下表:
学生编号12345678
数学分数x6065707580859095
物理分数y7277808488909395
根据上表数据用变量y与x的相关系数或散点图说明物理成绩y与数学成绩x之间是否具有线性相关性?如果具有线性相关性,求y与x的线性回归方程(系数精确到0.01);如果不具有线性相关性,请说明理由.
参考公式:相关系数$r=\frac{{\sum_{i=1}^n{({x_i}-\overline x)({y_i}-\overline y)}}}{{\sqrt{\sum_{i=1}^n{{{({x_i}-\overline x)}^2}}}\sqrt{\sum_i^n{({y_i}-\overline y}}{)^2}}}$;回归直线的方程是:$\widehat{y}$=bx+a.
其中对应的回归估计值b=$\frac{\sum_{i=1}^{n}({x}_{i}-\overline{x})({y}_{i}-\overline{y})}{\sum_{i=1}^{n}({x}_{i}-\overline{x})^{2}}$,a=$\overline{y}$-b$\overline{x}$;
参考数据:$\overline{x}$=77.5,$\overline{y}$=85,$\sum_{i=1}^{8}$(x1-$\overline{x}$)2≈1050,$\sum_{i=1}^{8}$(y1-$\overline{y}$)2≈456;$\sum_{i=1}^{8}$(x1-$\overline{x}$)(y1-$\overline{y}$)≈688,$\sqrt{1050}$≈32.4,$\sqrt{456}$≈21.4,$\sqrt{550}$≈23.5.

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网