题目内容
【题目】设,.已知函数,.
(Ⅰ)求的单调区间;
(Ⅱ)已知函数和的图象在公共点(x0,y0)处有相同的切线,
(i)求证:在处的导数等于0;
(ii)若关于x的不等式在区间上恒成立,求b的取值范围.
【答案】(I)单调递增区间为,,单调递减区间为.(II)(i)见解析.(ii).
【解析】
试题求导数后因式分解根据,得出,根据导数的符号判断函数的单调性,给出单调区间,对求导,根据函数和的图象在公共点(x0,y0)处有相同的切线,解得,根据的单调性可知在上恒成立,关于x的不等式在区间上恒成立,得出,得,,
求出的范围,得出的范围.
试题解析:(I)由,可得
,
令,解得,或.由,得.
当变化时,,的变化情况如下表:
所以,的单调递增区间为,,单调递减区间为.
(II)(i)因为,由题意知,
所以,解得.
所以,在处的导数等于0.
(ii)因为,,由,可得.
又因为,,故为的极大值点,由(I)知.
另一方面,由于,故,
由(I)知在内单调递增,在内单调递减,
故当时,在上恒成立,从而在上恒成立.
由,得,.
令,,所以,
令,解得(舍去),或.
因为,,,故的值域为.
所以,的取值范围是.
【题目】某体育老师随机调查了100名同学,询问他们最喜欢的球类运动,统计数据如表所示.已知最喜欢足球的人数等于最喜欢排球和最喜欢羽毛球的人数之和.
最喜欢的球类运动 | 足球 | 篮球 | 排球 | 乒乓球 | 羽毛球 | 网球 |
人数 | a | 20 | 10 | 15 | b | 5 |
(1)求的值;
(2)将足球、篮球、排球统称为“大球”,将乒乓球、羽毛球、网球统称为“小球”.现按照喜欢大、小球的人数用分层抽样的方式从调查的同学中抽取5人,再从这5人中任选2人,求这2人中至少有一人喜欢小球的概率.
【题目】某大型单位举行了一次全体员工都参加的考试,从中随机抽取了20人的分数.以下茎叶图记录了他们的考试分数(以十位数字为茎,个位数字为叶):
若分数不低于95分,则称该员工的成绩为“优秀”.
(1)从这20人中任取3人,求恰有1人成绩“优秀”的概率;
(2)根据这20人的分数补全下方的频率分布表和频率分布直方图,并根据频率分布直方图解决下面的问题.
组别 | 分组 | 频数 | 频率 | |
1 | ||||
2 | ||||
3 | ||||
4 |
①估计所有员工的平均分数(同一组中的数据用该组区间的中点值作代表);
②若从所有员工中任选3人,记表示抽到的员工成绩为“优秀”的人数,求的分布列和数学期望.
【题目】某保险公司有一款保险产品的历史收益率(收益率利润保费收入)的频率分布直方图如图所示:
(1)试估计这款保险产品的收益率的平均值;
(2)设每份保单的保费在20元的基础上每增加元,对应的销量为(万份).从历史销售记录中抽样得到如下5组与的对应数据:
元 | 25 | 30 | 38 | 45 | 52 |
销量为(万份) | 7.5 | 7.1 | 6.0 | 5.6 | 4.8 |
由上表,知与有较强的线性相关关系,且据此计算出的回归方程为.
(ⅰ)求参数的值;
(ⅱ)若把回归方程当作与的线性关系,用(1)中求出的收益率的平均值作为此产品的收益率,试问每份保单的保费定为多少元时此产品可获得最大利润,并求出最大利润.注:保险产品的保费收入每份保单的保费销量.