题目内容
【题目】已知函数(为自然对数的底数).
(1)讨论函数的单调性;
(2)当时,恒成立,求整数的最大值.
【答案】(1)见解析;(2) 的最大值为1.
【解析】
(1)根据的不同范围,判断导函数的符号,从而得到的单调性;(2)方法一:构造新函数,通过讨论的范围,判断单调性,从而确定结果;方法二:利用分离变量法,把问题变为,求解函数最小值得到结果.
(1)
当时, 在上递增;
当时,令,解得:
在上递减,在上递增;
当时, 在上递减
(2)由题意得:
即对于恒成立
方法一、令,则
当时, 在上递增,且,符合题意;
当时, 时,单调递增
则存在,使得,且在上递减,在上递增
由得:
又 整数的最大值为
另一方面,时,,
,
时成立
方法二、原不等式等价于:恒成立
令
令,则
在上递增,又,
存在,使得
且在上递减,在上递增
又,
又,整数的最大值为
练习册系列答案
相关题目
【题目】随着西部大开发的深入,西南地区的大学越来越受到广大考生的青睐.下表是西南地区某大学近五年的录取平均分与省一本线对比表:
年份 | |||||
年份代码 | |||||
省一本线 | |||||
录取平均分 | |||||
录取平均分与省一本线分差 |
(1)根据上表数据可知,与之间存在线性相关关系,求关于的性回归方程;
(2)假设2019年该省一本线为分,利用(1)中求出的回归方程预测2019年该大学录取平均分.
参考公式:,
【题目】某煤炭公司销售人员根据该公司以往的销售情况,得到如下频率分布表
日销售量分组 | [2,4) | [4,6) | [6,8) | [8,10) | [10,12] |
频率 | 0.10 | 0.20 | 0.30 | 0.25 | 0.15 |
(1)在下图中作出这些数据的频率分布直方图;
(2)将日销售量落入各组的频率视为概率,并假设每天的销售量相互独立.若未来3天内日销售量不低于6吨的天数为X,求X的分布列、数学期望与方差.