题目内容
(2013•浙江)如图,在四棱锥P﹣ABCD中,PA⊥面ABCD,AB=BC=2,AD=CD=,PA=,∠ABC=120°,G为线段PC上的点.
(Ⅰ)证明:BD⊥平面PAC;
(Ⅱ)若G是PC的中点,求DG与PAC所成的角的正切值;
(Ⅲ)若G满足PC⊥面BGD,求的值.
(Ⅰ)证明:BD⊥平面PAC;
(Ⅱ)若G是PC的中点,求DG与PAC所成的角的正切值;
(Ⅲ)若G满足PC⊥面BGD,求的值.
(1)见解析 (2) (3)
(Ⅰ)证明:∵在四棱锥P﹣ABCD中,PA⊥面ABCD,∴PA⊥BD.
∵AB=BC=2,AD=CD=,设AC与BD的交点为O,则BD是AC的中垂线,故O为AC的中点,且BD⊥AC.
而PA∩AC=A,∴BD⊥面PAC.
(Ⅱ)若G是PC的中点,O为AC的中点,则GO平行且等于PA,故由PA⊥面ABCD,可得GO⊥面ABCD,
∴GO⊥OD,故OD⊥平面PAC,故∠DGO为DG与平面PAC所成的角.
由题意可得,GO=PA=.
△ABC中,由余弦定理可得AC2=AB2+BC2﹣2AB•BC•cos∠ABC=4+4﹣2×2×2×cos120°=12,
∴AC=2,OC=.
∵直角三角形COD中,OD==2,
∴直角三角形GOD中,tan∠DGO==.
(Ⅲ)若G满足PC⊥面BGD,∵OG?平面BGD,∴PC⊥OG,且 PC==.
由△COG∽△PCA,可得,即 ,解得GC=,
∴PG=PC﹣GC=﹣=,∴==.
∵AB=BC=2,AD=CD=,设AC与BD的交点为O,则BD是AC的中垂线,故O为AC的中点,且BD⊥AC.
而PA∩AC=A,∴BD⊥面PAC.
(Ⅱ)若G是PC的中点,O为AC的中点,则GO平行且等于PA,故由PA⊥面ABCD,可得GO⊥面ABCD,
∴GO⊥OD,故OD⊥平面PAC,故∠DGO为DG与平面PAC所成的角.
由题意可得,GO=PA=.
△ABC中,由余弦定理可得AC2=AB2+BC2﹣2AB•BC•cos∠ABC=4+4﹣2×2×2×cos120°=12,
∴AC=2,OC=.
∵直角三角形COD中,OD==2,
∴直角三角形GOD中,tan∠DGO==.
(Ⅲ)若G满足PC⊥面BGD,∵OG?平面BGD,∴PC⊥OG,且 PC==.
由△COG∽△PCA,可得,即 ,解得GC=,
∴PG=PC﹣GC=﹣=,∴==.
练习册系列答案
相关题目