题目内容

【题目】已知函数f(x)(x∈R)满足f(1)=1,且f(x)的导函数f′(x)< ,则不等式f(x2)< + 的解集为(
A.(﹣
B.(﹣∞,﹣1)∪(1,+∞)??
C.(﹣1,1)
D.(﹣∞,﹣ )∪( ,+∞)

【答案】B
【解析】解:设F(x)=f(x)﹣ x,则F′(x)=f′(x)﹣
∵f′(x)< ,∴F′(x)=f′(x)﹣ <0,
即函数F(x)在R上单调递减
而f(x2)< +
即f(x2)﹣ <f(1)﹣
∴F(x2)<F(1)而函数F(x)在R上单调递减,
∴x2>1即x∈(﹣∞,﹣1)∪(1,+∞),
故选:B.
【考点精析】掌握利用导数研究函数的单调性是解答本题的根本,需要知道一般的,函数的单调性与其导数的正负有如下关系: 在某个区间内,(1)如果,那么函数在这个区间单调递增;(2)如果,那么函数在这个区间单调递减.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网