题目内容
【题目】设函数f(x)=x2+bx﹣alnx.
(1)若x=2是函数f(x)的极值点,1和x0是函数f(x)的两个不同零点,且x0∈(n,n+1),n∈N,求n.
(2)若对任意b∈[﹣2,﹣1],都存在x∈(1,e)(e为自然对数的底数),使得f(x)<0成立,求实数a的取值范围.
【答案】
(1)解: ,∵x=2是函数f(x)的极值点,∴ .
∵1是函数f(x)的零点,得f(1)=1+b=0,
由 ,解得a=6,b=﹣1.
∴f(x)=x2﹣x﹣6lnx,
令 = ,x∈(0,+∞),得x>2;
令f′(x)<0得0<x<2,
所以f(x)在(0,2)上单调递减;在(2,+∞)上单调递增.
故函数f(x)至多有两个零点,其中1∈(0,2),x0∈(2,+∞),
因为f(2)<f(1)=0,f(3)=6(1﹣ln3)<0,f(4)=6(2﹣ln4)= 0,
所以x0∈(3,4),故n=3.
(2)解:令g(b)=xb+x2﹣alnx,b∈[﹣2,﹣1],则g(b)为关于b的一次函数且为增函数,
根据题意,对任意b∈[﹣2,﹣1],都存在x∈(1,e)(e 为自然对数的底数),使得f(x)<0成立,
则在x∈(1,e)上 ,有解,
令h(x)=x2﹣x﹣alnx,只需存在x0∈(1,e)使得h(x0)<0即可,
由于 ,
令φ(x)=2x2﹣x﹣a,x∈(1,e),φ'(x)=4x﹣1>0,
∴φ(x)在(1,e)上单调递增,φ(x)>φ(1)=1﹣a,
①当1﹣a≥0,即a≤1时,φ(x)>0,即h′(x)>0,h(x)在(1,e)上单调递增,∴h(x)>h(1)=0,不符合题意.
②当1﹣a<0,即a>1时,φ(1)=1﹣a<0,φ(e)=2e2﹣e﹣a
若a≥2e2﹣e>1,则φ(e)<0,所以在(1,e)上φ(x)<0恒成立,即h′(x)<0恒成立,∴h(x)在(1,e)上单调递减,
∴存在x0∈(1,e)使得h(x0)<h(1)=0,符合题意.
若2e2﹣e>a>1,则φ(e)>0,∴在(1,e)上一定存在实数m,使得φ(m)=0,
∴在(1,m)上φ(x)<0恒成立,即h′(x)<0恒成立,∴h(x)在(1,e)上单调递减,
∴存在x0∈(1,e)使得h(x0)<h(1)=0,符合题意.
综上所述,当a>1时,对任意b∈[﹣2,﹣1],都存在x∈(1,e)(e 为自然对数的底数),使得f(x)<0成立
【解析】(1)先求导得到 ,由 ,f(1)=1+b=0,得到a与b的值,再令导数大于0,或小于0,得到函数的单调区间,再由零点存在性定理得到得到x0∈(3,4),进而得到n的值;(2)令g(b)=xb+x2﹣alnx,b∈[﹣2,﹣1],问题转化为在x∈(1,e)上g(b)max=g(﹣1)<0有解即可,亦即只需存在x0∈(1,e)使得x2﹣x﹣alnx<0即可,连续利用导函数,然后分别对1﹣a≥0,1﹣a<0,看是否存在x0∈(1,e)使得h(x0)<h(1)=0,进而得到结论.
【考点精析】本题主要考查了函数的极值与导数的相关知识点,需要掌握求函数的极值的方法是:(1)如果在附近的左侧,右侧,那么是极大值(2)如果在附近的左侧,右侧,那么是极小值才能正确解答此题.
【题目】共享单车是指企业在校园、地铁站点、公交站点、居民区、商业区、公共服务区等提供自行车单车共享服务,是共享经济的一种新形态,一个共享单车企业在某个城市就“一天中一辆单车的平均成本(单位:元)与租用单车的数量(单位:车辆)之间的关系”进行调查研究,在调查过程中进行了统计,得出相关数据见下表:
租用单车数量(千辆) | 2 | 3 | 4 | 5 | 8 |
每天一辆车平均成本(元) | 3.2 | 2.4 | 2 | 1.9 | 1.7 |
根据以上数据,研究人员分别借助甲、乙两种不同的回归模型,得到两个回归方程,方程甲: ,方程乙: .
(1)为了评价两种模型的拟合效果,完成以下任务:
①完成下表(计算结果精确到0.1)(备注: , 称为相应于点的残差(也叫随机误差));
租用单车数量(千辆) | 2 | 3 | 4 | 5 | 8 | |
每天一辆车平均成本(元) | 3.2 | 2.4 | 2 | 1.9 | 1.7 | |
模型甲 | 估计值 | 2.4 | 2.1 | 1.6 | ||
残差 | 0 | 0.1 | ||||
模型乙 | 估计值 | 2.3 | 2 | 1.9 | ||
残差 | 0.1 | 0 | 0 |
②分别计算模型甲与模型乙的残差平方和及,并通过比较, 的大小,判断哪个模型拟合效果更好.
(2)这个公司在该城市投放共享单车后,受到广大市民的热烈欢迎,共享单车常常供不应求,于是该公司研究是否增加投放,根据市场调查,这个城市投放8千辆时,该公司平均一辆单车一天能收入10元,6元收入的概率分别为0.6,0.4;投放1万辆时,该公司平均一辆单车一天能收入10元,6元收入的概率分别为0.4,0.6,问该公司应该投放8千辆还是1万辆能获得更多利润?(按(1)中拟合效果较好的模型计算一天中一辆单车的平均成本,利润=收入—成本).
【题目】共享单车是指企业在校园、地铁站点、公交站点、居民区、商业区、公共服务区等提供自行车单车共享服务,是共享经济的一种新形态,一个共享单车企业在某个城市就“一天中一辆单车的平均成本(单位:元)与租用单车的数量(单位:车辆)之间的关系”进行调查研究,在调查过程中进行了统计,得出相关数据见下表:
租用单车数量(千辆) | 2 | 3 | 4 | 5 | 8 |
每天一辆车平均成本(元) | 3.2 | 2.4 | 2 | 1.9 | 1.7 |
根据以上数据,研究人员分别借助甲、乙两种不同的回归模型,得到两个回归方程,方程甲: ,方程乙: .
(1)为了评价两种模型的拟合效果,完成以下任务:
①完成下表(计算结果精确到0.1)(备注: , 称为相应于点的残差(也叫随机误差));
租用单车数量(千辆) | 2 | 3 | 4 | 5 | 8 | |
每天一辆车平均成本(元) | 3.2 | 2.4 | 2 | 1.9 | 1.7 | |
模型甲 | 估计值 | 2.4 | 2.1 | 1.6 | ||
残差 | 0 | 0.1 | ||||
模型乙 | 估计值 | 2.3 | 2 | 1.9 | ||
残差 | 0.1 | 0 | 0 |
②分别计算模型甲与模型乙的残差平方和及,并通过比较, 的大小,判断哪个模型拟合效果更好.
(2)这个公司在该城市投放共享单车后,受到广大市民的热烈欢迎,共享单车常常供不应求,于是该公司研究是否增加投放,根据市场调查,这个城市投放8千辆时,该公司平均一辆单一天能收入10元,6元收入的概率分别为0.6,0.4;投放1万辆时,该公司平均一辆单车一天能收入10元,6元收入的概率分别为0.4,0.6,问该公司应该投放8千辆还是1万辆能获得更多利润?(按(1)中拟合效果较好的模型计算一天中一辆单车的平均成本,利润=收入—成本).