题目内容

(本题共12分)如图所示,四边形ABCD是矩形,,F为CE上的点,且BF平面ACE,AC与BD交于点G
(1)AE平面BCE
(2)AE//平面BFD
(3)锥C-BGF的体积
(1)略
(2)略
(3)三棱锥C-BGF的体积为
解:(1)∵   又知四边形ABCD是矩形,故AD//BC
   故可知  ………….1分
∵  BF平面ACE  ∴ BF AE  …………………………………………2分

∴ AE平面BCE ………………………………………………………………4分
(2) 依题意,易知G为AC的中点
又∵  BF平面ACE  所以可知 BFEC, 又BE=EC
∴ 可知F为CE的中点 ……………………………………………………………5分
故可知 GF//AE  ……………………………………………………………………6分
又可知
∴ AE//平面BFD……………………………………………………………………..8分
(3) 由(1)可知AE平面BCE,又AE//GF
∴ GF平面BCE……………………………………………………………………9分
    所以GF的长为三棱锥G-BCF的高  GF=.  ....10分
………………………………………………11分

∴ 三棱锥C-BGF的体积为……………………………………………………..12分
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网