题目内容

如图,三棱锥P-ABC中,已知PA^平面ABC, PA=3,PB=PC=BC="6," 求二面角P-BC-A的正弦值
解:取BC的中点D,连结PDAD,∵ PB =PC,∴ PDBC
  ∵ PA⊥平面ABC,由三垂线定理的逆定理得 ADBC
  ∴ ∠PDA就是二面角P-BC-A的平面角
  ∵ PB = PC = BC =" 6"  ,∴ PD = 
  sin∠PDA=  即二面角P-BC-A的正弦值是
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网