题目内容
【题目】近期济南公交公司分别推出支付宝和微信扫码支付乘车活动,活动设置了一段时间的推广期,由于推广期内优惠力度较大,吸引越来越多的人开始使用扫码支付.某线路公交车队统计了活动刚推出一周内每一天使用扫码支付的人次,用表示活动推出的天数, 表示每天使用扫码支付的人次(单位:十人次),统计数据如表所示:
根据以上数据,绘制了散点图.
(1)根据散点图判断,在推广期内, 与(均为大于零的常数)哪一个适宜作为扫码支付的人次关于活动推出天数的回归方程类型?(给出判断即可,不必说明理由);
(2)根据(1)的判断结果及表中的数据,建立关于的回归方程,并预测活动推出第天使用扫码支付的 人次;
(3)推广期结束后,为更好的服务乘客,车队随机调查了人次的乘车支付方式,得到如下结果:
已知该线路公交车票价元,使用现金支付的乘客无优惠,使用乘车卡支付的乘客享受折优惠,扫码支付的乘客随机优惠,根据调查结果发现:使用扫码支付的乘客中有名乘客享受折优惠,有名乘客享受折优惠,有名乘客享受折优惠.预计该车队每辆车每个月有1万人次乘车,根据所给数据,以事件发生的频率作为相应事件发生的概率,在不考虑其他因素的条件下,按照上述收费标准,试估计该车队一辆车一年的总收入.
参考数据:
其中
参考公式:
对于一组数据,其回归直线的斜率和截距的最小二乘估计公式分别为:
【答案】(1)见解析;(2) 活动推出第天使用扫码支付的人次为;(3)见解析.
【解析】分析:(1)根据散点图判断, 适宜作为扫码支付的人数关于活动推出天数的回归方程类型. (2)先求出,再得到,再预测活动推出第天使用扫码支付的 人次.(3)先求出享受折优惠、8折优惠、9折优惠的收入,再得到总的收入.
详解: (1)根据散点图判断, 适宜作为扫码支付的人数关于活动推出天数的回归方程类型. (2) ,两边同时取常用对数得: ;
设,
,,
,
把代入,得: ,
,,;
把代入上式: ;
活动推出第天使用扫码支付的人次为
关于的回归方程为: ,
活动推出第天使用扫码支付的人次为;
(3)由题意可知:一个月中使用现金的乘客有人,共收入元;使用乘车卡的乘客有人,共收入元;
使用扫码支付的乘客有人,
其中:享受折优惠的有人,共收入元
享受折优惠的有人,共收入元:
享受折优惠的有人,共收入元
所以,一辆车一个月的收入为: (元)
所以,一辆车一年的收入为: (元)
【题目】某区组织部为了了解全区科级干部“党风廉政知识”的学习情况,按照分层抽样的方法,从全区320名正科级干部和1280名副科级干部中抽取40名科级干部预测全区科级干部“党风廉政知识”的学习情况.现将这40名科级干部分为正科级干部组和副科级干部组,利用同一份试卷分别进行预测.经过预测后,两组各自将预测成绩统计分析如下表:
分组 | 人数 | 平均成绩 | 标准差 |
正科级干部组 | 80 | 6 | |
副科级干部组 | 70 | 4 |
(1)求;
(2)求这40名科级干部预测成绩的平均分和标准差;
(3)假设该区科级干部的“党风廉政知识”预测成绩服从正态分布,用样本平均数作为的估计值,用样本标准差作为的估计值.利用估计值估计:该区科级干部“党风廉政知识”预测成绩小于60分的约为多少人?
附:若随机变量服从正态分布,则;;.