题目内容

【题目】满足性质:对于区间(1,2)上的任意恒成立的函数叫Ω函数,则下面四个函数中,属于Ω函数的是(   )

A.B.C.D.

【答案】C

【解析】

在区间(12)上的任意实数x1x2x1≠x2),分别验证下列4个函数.

对于Afx=|x||fx2-fx1|=||x2|-|x1||=|x2-x1|(因为故x1x2大于0)故对于等于号不满足,故不成立.

对于Cf(x)=|fx2-fx1|=||=|||x2-x1|(因为x1x2在区间(12)上,故x1x2大于1)故成立.

对于Bfx=2x时,|fx2-fx1|>|x2-x1|不成立.

对于Dfx=x2|fx2-fx1|=|x22-x12|=x2+x1|x2-x1||x2-x1|不成立,故选C.

练习册系列答案
相关题目

【题目】近期济南公交公司分别推出支付宝和微信扫码支付乘车活动,活动设置了一段时间的推广期,由于推广期内优惠力度较大,吸引越来越多的人开始使用扫码支付.某线路公交车队统计了活动刚推出一周内每一天使用扫码支付的人次,表示活动推出的天数, 表示每天使用扫码支付的人次(单位:十人次),统计数据如表所示:

根据以上数据,绘制了散点图.

(1)根据散点图判断,在推广期内, (均为大于零的常数)哪一个适宜作为扫码支付的人次关于活动推出天数的回归方程类型?(给出判断即可,不必说明理由);

(2)根据(1)的判断结果及表中的数据,建立关于的回归方程,并预测活动推出第天使用扫码支付的 人次;

(3)推广期结束后,为更好的服务乘客,车队随机调查了人次的乘车支付方式,得到如下结果

已知该线路公交车票价,使用现金支付的乘客无优惠,使用乘车卡支付的乘客享受折优惠,扫码支付的乘客随机优惠,根据调查结果发现:使用扫码支付的乘客中有名乘客享受折优惠,名乘客享受折优惠,名乘客享受折优惠.预计该车队每辆车每个月有1万人次乘车,根据所给数据,以事件发生的频率作为相应事件发生的概率在不考虑其他因素的条件下,按照上述收费标准,试估计该车队一辆车一年的总收入.

参考数据:

其中

参考公式

对于一组数据其回归直线的斜率和截距的最小二乘估计公式分别为:

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网