题目内容
【题目】在平面直角坐标系中,曲线,(为参数),以坐标原点为极点,轴的正半轴为极轴且取相同的单位长度建立极坐标系,曲线的极坐标方程为.
(1)求曲线的普通方程和曲线的普通方程;
(2)若分别为曲线上的动点,求的最大值.
【答案】(1) 的普通方程为,;(2) 的最大值为.
【解析】试题分析:(1)先根据将曲线的极坐标方程化为直角坐标方程,再根据三角同角关系将曲线参数方程化为普通方程,(2)先求圆心到椭圆上点最大值,再加半径得的最大值.
试题解析:(1)的普通方程为.
∵曲线的极坐标方程为,
∴曲线的普通方程为,即.
(2)设为曲线上一点,
则点到曲线的圆心的距离
.
∵,∴当时,d有最大值.
又∵P,Q分别为曲线,曲线上动点,
∴的最大值为.
练习册系列答案
相关题目