题目内容
【题目】如图,在矩形中,AB=2AD,为DC的中点,将△ADM沿AM折起使平面ADM⊥平面ABCM.
(1)当AB=2时,求三棱锥的体积;
(2)求证:BM⊥AD.
【答案】(1);(2)见解析
【解析】试题分析:(1)取AM的中点N,连接DN,易证得DN⊥平面ABCM,由,只需计算和即可;
(2)可证BM⊥DN和BM⊥AM,从而证得BM⊥平面ADM,从而得证.
试题解析:
(1)取AM的中点N,连接DN.
∵在矩形中,为DC的中点,AB=2AD,∴DM=AD.
又N为AM的中点,∴DN⊥AM.
又∵平面ADM⊥平面ABCM,平面,平面ADM,
∴DN⊥平面ABCM.
∵AD=1,∴.
又,∴.
证明:(2)由(1)可知,DN⊥平面ABCM.
又平面ABCM,∴BM⊥DN.
在矩形中,AB=2AD,M为MC中点,
∴△ADM,△BCM都是等腰直角三角形,且∠ADM=90°,∠BCM=90°,∴BM⊥AM.
又DN,平面ADM,,∴BM⊥平面ADM.
又平面ADM,∴BM⊥AD.
【题目】一只红铃虫的产卵数y和温度x有关,现收集了6组观测数据于下表中,通过散点图可以看出样本点分布在一条指数型函数y=的图象的周围.
(1)试求出y关于x的上述指数型的回归曲线方程(结果保留两位小数);
(2)试用(1)中的回归曲线方程求相应于点(24,17)的残差.(结果保留两位小数)
温度x(°C) | 20 | 22 | 24 | 26 | 28 | 30 |
产卵数y(个) | 6 | 9 | 17 | 25 | 44 | 88 |
z=lny | 1.79 | 2.20 | 2.83 | 3.22 | 3.78 | 4.48 |
几点说明:
①结果中的都应按题目要求保留两位小数.但在求时请将的值多保留一位即用保留三位小数的结果代入.
②计算过程中可能会用到下面的公式:回归直线方程的斜率==,截距.
③下面的参考数据可以直接引用:=25,=31.5,≈3.05,=5248,≈476.08,,ln18.17≈2.90.