题目内容
【题目】已知抛物线的顶点为平面直角坐标系的坐标原点,焦点为圆的圆心.经过点的直线交抛物线于两点,交圆于两点,在第一象限,在第四象限.
(1)求抛物线的方程;
(2)是否存在直线使是与的等差中项?若存在,求直线的方程;若不存在,请说明理由.
【答案】(1)抛物线E的方程为;(2)存在满足要求的直线或直线.
【解析】试题分析:(1)先根据圆的标准方程得圆心,再根据抛物线性质得p,即得抛物线的方程;(2)由题意得,再根据条件得.设直线方程,并与抛物线方程联立,利用韦达定理以及弦长公式求,解出斜率k.
试题解析:(1)∵圆F的方程为,
∴圆心F的坐标为(2,0),半径r=1.
根据题意设抛物线E的方程为,
∴,解得p=4.
∴抛物线E的方程为.
(2) ∵是与的等差中项,
∴.
∴.
讨论:
若垂直于x轴,则的方程为x=2,代入,解得.
此时|AD|=8,不满足题意;
若不垂直于x轴,则设的斜率为k(k≠0),此时的方程为,
由,得.
设,则.
∵拋物线E的准线方程为x=-2,
∴
∴,解得.
当时,化为.
∵,∴有两个不相等实数根.
∴满足题意.
∴存在满足要求的直线或直线.
练习册系列答案
相关题目