题目内容
【题目】已知函数.
(Ⅰ)若曲线在点处的切线与直线垂直,求实数的取值;
(Ⅱ)求函数的单调区间;
(Ⅲ)记.当时,函数在区间上有两个零点,求实数的取值范围.
【答案】(Ⅰ);(Ⅱ)当时, 减区间为;当时,增区间为,减区间为;(Ⅲ).
【解析】
(1)先求出函数f(x)的定义域和导函数f′(x),再由两直线垂直的条件可得f′(1)=﹣3,求出a的值;
(2)求出f′(x),对a讨论,由f′(x)>0和f′(x)<0进行求解,即判断出函数的单调区间;
(3)由(1)和题意求出g(x)的解析式,求出g′(x),由g′(x)>0和g′(x)<0进行求解,即判断出函数的单调区间,再由条件和函数零点的几何意义列出不等式组,求出b的范围.
(Ⅰ)定义域,,,
∴.
(Ⅱ)
当,,单减区间为
当时
令,单增区间为;令,单减区间为
当时,单减区间
∴当时, 减区间为;
当时,增区间为,减区间为;
(Ⅲ)
令,,
令,;令,
∴是在上唯一的极小值点,也是唯一的最小值点
∴
∵在上有两个零点
∴只须
∴.
【题目】某产品的三个质量指标分别为x, y, z, 用综合指标S =" x" + y + z评价该产品的等级. 若S≤4, 则该产品为一等品. 现从一批该产品中, 随机抽取10件产品作为样本, 其质量指标列表如下:
产品编号 | A1 | A2 | A3 | A4 | A5 |
质量指标(x, y, z) | (1,1,2) | (2,1,1) | (2,2,2) | (1,1,1) | (1,2,1) |
产品编号 | A6 | A7 | A8 | A9 | A10 |
质量指标(x, y, z) | (1,2,2) | (2,1,1) | (2,2,1) | (1,1,1) | (2,1,2) |
(Ⅰ) 利用上表提供的样本数据估计该批产品的一等品率;
(Ⅱ) 在该样品的一等品中, 随机抽取两件产品,
(1) 用产品编号列出所有可能的结果;
(2) 设事件B为 “在取出的2件产品中, 每件产品的综合指标S都等于4”, 求事件B发生的概率.
【题目】某体育老师随机调查了100名同学,询问他们最喜欢的球类运动,统计数据如表所示.已知最喜欢足球的人数等于最喜欢排球和最喜欢羽毛球的人数之和.
最喜欢的球类运动 | 足球 | 篮球 | 排球 | 乒乓球 | 羽毛球 | 网球 |
人数 | a | 20 | 10 | 15 | b | 5 |
(1)求的值;
(2)将足球、篮球、排球统称为“大球”,将乒乓球、羽毛球、网球统称为“小球”.现按照喜欢大、小球的人数用分层抽样的方式从调查的同学中抽取5人,再从这5人中任选2人,求这2人中至少有一人喜欢小球的概率.