题目内容
【题目】如图,在四棱锥O﹣ABCD中,OA⊥底面ABCD,且底面ABCD是边长为2的正方形,且OA=2,M,N分别为OA,BC的中点.
(1)求证:直线MN平面OCD;
(2)求点B到平面DMN的距离.
【答案】(1)证明见详解;(2)
【解析】
(1)构造平面,使之与平面平行,再通过面面平行证明线面平行即可;
(2)通过变换顶点,利用等体积法求得点到平面的距离.
(1)取中点为,连接,如下图所示:
在中,因为分别是的中点,
故//;
在正方形中,因为分别是的中点,
故//;
又因为,平面,
,平面,
故平面//平面,
又因为平面,故//平面,即证.
(2)连接,如下图所示:
因为点为中点,故
又因为平面,且
故.
又在中,容易知,
故边上的高为,
故.
设点到平面的距离为,
则
解得.
故点到平面的距离为.
练习册系列答案
相关题目