题目内容
【题目】某汽车公司为了考查某4S店的服务态度,对到店维修保养的客户进行回访调查,每个用户在到此店维修或保养后可以对该店进行打分,最高分为10分.上个月公司对该4S店的100位到店维修保养的客户进行了调查,将打分的客户按所打分值分成以下几组:
第一组[0,2),第二组[2,4),第三组[4,6),第四组[6,8),第五组[8,10],得到频率分布直方图如图所示.
(I)求所打分值在[6,10]的客户的人数:
(II)该公司在第二、三组客户中按分层抽样的方法抽取6名客户进行深入调查,之后将从这6人中随机抽取2人进行物质奖励,求得到奖励的人来自不同组的概率.
【答案】解:(Ⅰ)由直方图知,所打分值在[6,10]的频率为(0.175+0.150)×2=0.65.
所以所打分值在[6,10]的客户的人数 为0.65×100=65 人.
(Ⅱ)由直方图知,第二、三组客户人数分别为10人和20人,所以抽出的6人中,第二组有2人,设为A,B;第三组有4人,设为a,b,c,d.
从中随机抽取2人的所有情况如下:
AB,Aa,Ab,Ac,Ad,Ba,Bb,Bc,Bd,ab,ac,ad,bc,bd,cd共15种.
其中,两人来自不同组的情况有:Aa,Ab,Ac,Ad,Ba,Bb,Bc,Bd共有8种,
所以,得到奖励的人来自不同组的概率为
【解析】(Ⅰ)根据已知中频率分布直方图,求出打分值在[6,10]的频率,进而可得打分值在[6,10]的客户的人数:(II)求出从这6人中随机抽取2人的情况总数,及两人来自不同组的情况数,代入概率公式,可得答案.
【考点精析】解答此题的关键在于理解频率分布直方图的相关知识,掌握频率分布表和频率分布直方图,是对相同数据的两种不同表达方式.用紧凑的表格改变数据的排列方式和构成形式,可展示数据的分布情况.通过作图既可以从数据中提取信息,又可以利用图形传递信息.