题目内容
【题目】已知函数f (x)=(x-2)ex+a(x-1)2,讨论f (x)的单调性.
【答案】见解析
【解析】
先求导函数,将其分解因式后,对a分类讨论,分别求得导函数为0时的根的情况,利用导函数的正负解得相应的x的范围,从而判断原函数的单调性.
f′(x)=(x-1)ex+2a(x-1)=(x-1)(ex+2a).
①设a≥0,则当x∈(-∞,1)时,f′(x)<0;
当x∈(1,+∞)时,f′(x)>0.
所以f(x)在(-∞,1)上单调递减,在(1,+∞)上单调递增.
②设a<0,由f′(x)=0得x=1或x=ln(-2a).
(a)若a=-,则f′(x)=(x-1)(ex-e),
所以f(x)在(-∞,+∞)上单调递增.
(b)若a>-,则ln(-2a)<1,
故当x∈(-∞,ln(-2a))∪(1,+∞)时,f′(x)>0;
当x∈(ln(-2a),1)时,f′(x)<0.
所以f(x)在(-∞,ln(-2a)),(1,+∞)上单调递增,在(ln(-2a),1)上单调递减.
(c)若a<-,则ln(-2a)>1,
故当x∈(-∞,1)∪(ln(-2a),+∞)时,f′(x)>0;
当x∈(1,ln(-2a))时,f′(x)<0.
所以f(x)在(-∞,1),(ln(-2a),+∞)上单调递增,在(1,ln(-2a))上单调递减.
综上所述,当时,单增区间为(﹣∞,1)和(ln(﹣2a),+∞),单减区间为(1,ln(﹣2a));
当时,只有单增区间为(﹣∞,+∞);
当时,单增区间为(﹣∞,ln(﹣2a))和(1,+∞),单减区间为(ln(﹣2a),1);
当a≥0时,单减区间为(﹣∞,1),单增区间为(1,+∞).
【题目】社会在对全日制高中的教学水平进行评价时,常常将被清华北大录取的学生人数作为衡量的标准之一.重庆市教委调研了某中学近五年(2013年-2017年)高考被清华北大录取的学生人数,制作了如下所示的表格(设2013年为第一年).
年份(第年) | |||||
人数(人) |
(1)试求人数关于年份的回归直线方程;
(2)在满足(1)的前提之下,估计2018年该中学被清华北大录取的人数(精确到个位);
(3)教委准备在这五年的数据中任意选取两年作进一步研究,求被选取的两年恰好不相邻的概率.
参考公式:.