题目内容
【题目】对于函数f(x),若存在x0∈R,使f(x0)=x0,则称x0是f(x)的一个不动点,已知f(x)=x2+ax+4在[1,3]恒有两个不同的不动点,则实数a的取值范围______.
【答案】
【解析】
不动点实际上就是方程f(x0)=x0的实数根,二次函数f(x)=x2+ax+4有不动点,是指方程x=x2+ax+4有实根,即方程x=x2+ax+4有两个不同实根,然后根据根列出不等式解答即可.
解:根据题意,f(x)=x2+ax+4在[1,3]恒有两个不同的不动点,得x=x2+ax+4在[1,3]有两个实数根,
即x2+(a﹣1)x+4=0在[1,3]有两个不同实数根,令g(x)=x2+(a﹣1)x+4在[1,3]有两个不同交点,
∴,即,
解得:a∈;
故答案为:.
练习册系列答案
相关题目
【题目】为了调查中学生每天玩游戏的时间是否与性别有关,随机抽取了男、女学生各50人进行调查,根据其日均玩游戏的时间绘制了如下的频率分布直方图.
(1)求所调查学生日均玩游戏时间在分钟的人数;
(2)将日均玩游戏时间不低于60分钟的学生称为“游戏迷”,已知“游戏迷”中女生有6人;根据已知条件,完成下面的列联表,并判断能否在犯错误的概率不超过0.05的前提下认为“游戏迷”和性别关系;
非游戏迷 | 游戏迷 | 合计 | |
男 | |||
女 | |||
合计 |
附:(其中为样本容量).
0.15 | 0.10 | 0.05 | 0.025 | 0.010 | |
2.072 | 2.706 | 3.841 | 5.024 | 6.635 |