题目内容
【题目】某市政府为了引导居民合理用水,决定全面实施阶梯水价,阶梯水价原则上以住宅(一套住宅为一户)的月用水量为基准定价:若用水量不超过12吨时,按4元/吨计算水费;若用水量超过12吨且不超过14吨时,超过12吨部分按6.60元/吨计算水费;若用水量超过14吨时,超过14吨部分按7.8元/吨计算水费.为了了解全市居民月用水量的分布情况,通过抽样,获得了100户居民的月用水量(单位:吨),将数据按照分成8组,制成了如图1所示的频率分布直方图.
(Ⅰ)假设用抽到的100户居民月用水量作为样本估计全市的居民用水情况.
(ⅰ)现从全市居民中依次随机抽取5户,求这5户居民恰好3户居民的月用水量都超过12吨的概率;
(ⅱ)试估计全市居民用水价格的期望(精确到0.01);
(Ⅱ)如图2是该市居民李某2016年1~6月份的月用水费(元)与月份的散点图,其拟合的线性回归方程是.若李某2016年1~7月份水费总支出为294.6元,试估计李某7月份的用水吨数.
【答案】(Ⅰ)(ⅰ)(ⅱ)(Ⅱ)李某7月份的用水吨数约为13吨
【解析】试题分析:
(i)由二项分布的概率公式可得概率为;
(ii)列出分布列,然后求得其属性期望值为吨;
(II)利用题意求得回归方程,然后结合题意可求得李某7月份的用水吨数为13吨.
试题解析:
解:(Ⅰ)(ⅰ)由题意,从全市居民中依次随机抽取5户,每户居民月用水量超过12吨的概率为,因此这5户居民恰好3户居民的月用水量都超过12吨的概率为
.
(ⅱ)由题设条件及月均用水量的频率分布直方图,可得居民每月的水费数据分组与概率分布表如下:
月用水量(吨) | |||
价格 (元/吨) | 4 | 4.20 | 4.60 |
概率 | 0.9 | 0.06 | 0.04 |
所以全市居民用水价格的期望吨.
(Ⅱ)设李某2016年1~6月份的月用水费(元)与月份的对应点为,它们的平均值分别为,则,又点在直线上,所以,因此,所以7月份的水费为元.
设居民月用水量为吨,相应的水费为元,则
,即:
当时, ,
所以李某7月份的用水吨数约为13吨.