题目内容
【题目】在直角坐标系xOy中,曲线y=x2+mx–2与x轴交于A,B两点,点C的坐标为(0,1).当m变化时,解答下列问题:
(1)能否出现AC⊥BC的情况?说明理由;
(2)证明过A,B,C三点的圆在y轴上截得的弦长为定值.
【答案】(1)见解析;(2)见解析.
【解析】试题分析:(1)设,由AC⊥BC得;由根与系数的关系得,矛盾,所以不存在;(2)求出过A,B,C三点的圆的圆心坐标和半径,即可得圆的方程,再利用垂径定理求弦长.
试题解析:(1)不能出现AC⊥BC的情况,理由如下:
设, ,则满足,所以.
又C的坐标为(0,1),故AC的斜率与BC的斜率之积为,所以不能出现AC⊥BC的情况.
(2)BC的中点坐标为(),可得BC的中垂线方程为.
由(1)可得,所以AB的中垂线方程为.
联立又,可得
所以过A、B、C三点的圆的圆心坐标为(),半径
故圆在y轴上截得的弦长为,即过A、B、C三点的圆在y轴上截得的弦长为定值.
练习册系列答案
相关题目
【题目】海水养殖场进行某水产品的新、旧网箱养殖方法的产量对比,收获时各随机抽取了100个网箱,测量各箱水产品的产量(单位:kg), 其频率分布直方图如下:
(1)记A表示事件“旧养殖法的箱产量低于50 kg”,估计A的概率;
(2)填写下面列联表,并根据列联表判断是否有99%的把握认为箱产量与养殖方法有关:
箱产量<50 kg | 箱产量≥50 kg | |
旧养殖法 | ||
新养殖法 |
(3)根据箱产量的频率分布直方图,对这两种养殖方法的优劣进行比较.
附:
P() | 0.050 0.010 0.001 |
k | 3.841 6.635 10.828 |
.