题目内容
【题目】已知,a,b,c分别是△ABC三个内角A,B,C的对边,下列四个命题:
①若tanA+tanB+tanC>0,则△ABC是锐角三角形
②若acoA=bcosB,则△ABC是等腰三角形
③若bcosC+ccosB=b,则△ABC是等腰三角形
④若 = ,则△ABC是等边三角形
其中正确命题的序号是 .
【答案】①③④
【解析】解:对于①,∵tanA+tanB=tan(A+B)(1﹣tanAtanB),
∴tanA+tanB+tanC=tan(A+B)(1﹣tanAtanB)+tanC=tanAtanBtanC>0,
∴A,B,C是△ABC的内角,故内角都是锐角,故①正确;
对于②,若acoA=bcosB,则sinAcosA=sinBcosB,
则2sinAcosA=2sinBcosB,则sin2A=sin2B,
则A=B,或A+B=90°,即△ABC是等腰三角形或直角三角形,故②错误
对于③,若bcosC+ccosB=b,sinBcosC+sinCcosB=sin(B+C)=sinA=sinB,
即A=B,则△ABC是等腰三角形,故③正确;
④对于④,若 = ,则 ,即tanA=tanB=tanC,即A=B=C,即△ABC是等边三角形,故④正确;
所以答案是:①③④.
【考点精析】解答此题的关键在于理解命题的真假判断与应用的相关知识,掌握两个命题互为逆否命题,它们有相同的真假性;两个命题为互逆命题或互否命题,它们的真假性没有关系.
练习册系列答案
相关题目