题目内容
【题目】已知几何体A﹣BCED的三视图如图所示,其中俯视图和侧视图都是腰长为4的等腰直角三角形,正视图为直角梯形,已知几何体A﹣BCED的体积为16.
(1)求实数a的值;
(2)将直角三角形△ABD绕斜边AD旋转一周,求该旋转体的表面积.
【答案】
(1)解:由该几何体的三视图知AC⊥面BCED,且EC=BC=AC=4,BD=a,
体积V= =16,
解得a=2
(2)解:在RT△ABD中, ,BD=2,AD=6,
过B作AD的垂线BH,垂足为H,得 ,
该旋转体由两个同底的圆锥构成,圆锥底面半径为 ,
所以圆锥底面周长为 ,两个圆锥的母线长分别为 和2,
故该旋转体的表面积为
【解析】(1)由该几何体的三视图知AC⊥面BCED,且EC=BC=AC=4,BD=a,利用几何体A﹣BCED的体积为16,求实数a的值;(2)过B作AD的垂线BH,垂足为H,得 ,求出圆锥底面周长为 ,两个圆锥的母线长分别为 和2,即可求该旋转体的表面积.
【考点精析】解答此题的关键在于理解由三视图求面积、体积的相关知识,掌握求体积的关键是求出底面积和高;求全面积的关键是求出各个侧面的面积,以及对旋转体(圆柱、圆锥、圆台)的理解,了解常见的旋转体有:圆柱、圆锥、圆台、球.
【题目】某学校高一年级学生某次身体素质体能测试的原始成绩采用百分制,已知所有这些学生的原始成绩均分布在内,发布成绩使用等级制各等级划分标准见下表,规定: 、、三级为合格等级, 为不合格等级.
百分制 | 分及以上 | 分到分 | 分到分 | 分以下 |
等级 |
为了解该校高一年级学生身体素质情况,从中抽取了名学生的原始成绩作为样本进行统计,按照的分组作出频率分布直方图如图所示,样本中分数在分及以上的所有数据的茎叶图如图所示.
(1)求和频率分布直方图中的的值;
(2)根据样本估计总体的思想,以事件发生的频率作为相应事件发生的概率,若在该校高一学生任选人,求至少有人成绩是合格等级的概率;
(3)在选取的样本中,从、两个等级的学生中随机抽取了名学生进行调研,记表示所抽取的名学生中为等级的学生人数,求随机变量的分布列及数学期望.