题目内容

6.已知椭圆$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的右焦点为F1(1,0),离心率为e.设A,B为椭圆上关于原点对称的两点,AF1的中点为M,BF1的中点为N,原点O在以线段MN为直径的圆上.设直线AB的斜率为k,若0<k≤$\sqrt{3}$,则e的取值范围为[$\sqrt{3}$-1,1).

分析 通过几何法得到|F1C|=|CO|=$\frac{1}{2}$,由$\left\{\begin{array}{l}{\frac{{x}^{2}}{{a}^{2}}+\frac{{y}^{2}}{{a}^{2}-1}=1}\\{{x}^{2}+{y}^{2}=1}\end{array}\right.$,可得到A点坐标,从而求出OA的斜率,由直线AB斜率为0<k≤$\sqrt{3}$,求出a的取值范围,从而求出e的取值范围.

解答 解:记线段MN与x轴交点为C.
AF1的中点为M,BF1的中点为N,
∴MN∥AB,|F1C|=|CO|=$\frac{1}{2}$,
∵A、B为椭圆上关于原点对称的两点,
∴|CM|=|CN|.
∵原点O在以线段MN为直径的圆上,
∴|CO|=|CM|=|CN|=$\frac{1}{2}$.
∴|OA|=|OB|=c=1.
∵|OA|>b,
∴a2=b2+c2<2c2
∴e=$\frac{c}{a}$>$\frac{\sqrt{2}}{2}$.
设A(x,y),
由$\left\{\begin{array}{l}{\frac{{x}^{2}}{{a}^{2}}+\frac{{y}^{2}}{{a}^{2}-1}=1}\\{{x}^{2}+{y}^{2}=1}\end{array}\right.$,
得$\left\{\begin{array}{l}{{x}^{2}={a}^{2}(2-{a}^{2})}\\{{y}^{2}=1-2{a}^{2}+{a}^{4}}\end{array}\right.$.
∵直线AB斜率为0<k≤$\sqrt{3}$,
∴0<$\frac{1-2{a}^{2}+{a}^{4}}{{a}^{2}(2-{a}^{2})}$≤3,
∴1-$\frac{\sqrt{3}}{2}$≤a2≤1+$\frac{\sqrt{3}}{2}$,
即为$\frac{\sqrt{3}-1}{2}$≤a≤$\frac{\sqrt{3}+1}{2}$,
∴e=$\frac{c}{a}$=$\frac{1}{a}$∈[$\sqrt{3}-1$,$\sqrt{3}+1$],
由于0<e<1,
∴离心率e的取值范围为[$\sqrt{3}$-1,1).
故答案为:[$\sqrt{3}$-1,1).

点评 本题考查椭圆的方程和性质,主要考查椭圆方程的运用,同时考查圆的性质和直线斜率公式的运用,考查运算能力,属于中档题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网