题目内容

19.已知A,B是△ABC的两个内角,$\overrightarrow{a}$=($\sqrt{2}$cos$\frac{A+B}{2}$,sin$\frac{A-B}{2}$),若|$\overrightarrow{a}$|=$\frac{\sqrt{6}}{2}$.
(1)求tanA•tanB的值;
(2)求tanC的最大值,并判断此时三角形的形状.

分析 (1)利用向量的模结合两角和与差的三角函数化简求解即可.
(2)利用两角和的正切函数,结合基本不等式求出最值,然后判断三角形的形状即可.

解答 解:(1)∵$|\vec a{|^2}=2{cos^2}\frac{A+B}{2}+{sin^2}\frac{A-B}{2}=\frac{3}{2}$,∴$1+cos(A+B)+\frac{1-cos(A-B)}{2}=\frac{3}{2}$;…(2分)
化简得 $cosAcosB-sinAsinB-\frac{cosAcosB+sinAsinB}{2}=0$,
所以,$\frac{1}{2}cosAcosB=\frac{3}{2}sinAsinB$,…(5分)
∴$tanAtanB=\frac{1}{3}$.…(6分)
(2)由(1)可知A,B为锐角,则tanA>0,tanB>0,…(7分)$tanC=-tan(A+B)=-\frac{tanA+tanB}{1-tanAtanB}=-\frac{3(tanA+tanB)}{2}≤-3\sqrt{tanAtanB}=-\sqrt{3}$.
(当且仅当tanA=tanB=$\frac{\sqrt{3}}{3}$,“=”成立) …(10分)
所以tanC的最大值为-$\sqrt{3}$,此时三角形的形状为等腰三角形.…(12分)

点评 本题考查三角形的解法,两角和与差的三角函数的应用,基本不等式的应用,考查计算能力.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网