题目内容
【题目】(本小题满分14分)已知椭圆的左焦点为,右顶点为,点的坐标为,的面积为.
(I)求椭圆的离心率;
(II)设点在线段上,,延长线段与椭圆交于点,点,在轴上,,且直线与直线间的距离为,四边形的面积为.
(i)求直线的斜率;
(ii)求椭圆的方程.
【答案】(1) (2)(ⅰ) (ⅱ)
【解析】(Ⅰ)设椭圆的离心率为e.由已知,可得.又由,可得,即.又因为,解得.
所以,椭圆的离心率为
(Ⅱ)(ⅰ)依题意,设直线FP的方程为,则直线FP的斜率为.
由(Ⅰ)知,可得直线AE的方程为,即,与直线FP的方程联立,可解得,即点Q的坐标为.
由已知|FQ|=,有,整理得,所以,即直线FP的斜率为.
(ii)由,可得,故椭圆方程可以表示为.
由(i)得直线FP的方程为,与椭圆方程联立消去,整理得,解得(舍去),或.因此可得点,进而可得,所以.由已知,线段的长即为与这两条平行直线间的距离,故直线和都垂直于直线.
因为,所以,所以的面积为,同理的面积等于,由四边形的面积为,得,整理得,又由,得.
所以,椭圆的方程为.
练习册系列答案
相关题目