题目内容
【题目】一个盒子装有六张卡片,上面分别写着如下六个函数:
.
(Ⅰ)从中任意拿取张卡片,其中至少有一张卡片上写着的函数为奇函数,在此条件下,求两张卡片上写着的函数相加得到的新函数为奇函数的概率;
(Ⅱ)现从盒子中逐一抽取卡片,且每次取出后均不放回,若取到一张写有偶函数的卡片则停止抽取,否则继续进行,求抽取次数的分布列和数学期望.
【答案】(Ⅰ);
(Ⅱ)的分布列为
1 | 2 | 3 | 4 | |
【解析】
试题分析:(Ⅰ)由于为奇函数,为偶函数,为偶函数,为奇函数,为偶函数,为奇函数 ,可得:
所有的基本事件包括两类:一类为两张卡片上写的函数均为奇函数;另一类为两张卡片上写的函数为一个是奇函数,一个为偶函数;得到基本事件总数、满足条件的基本事件个数.
(Ⅱ)可取1,2,3,4.计算概率:
,可得的分布列,进一步得
试题解析:(Ⅰ)为奇函数,为偶函数,为偶函数,为奇函数,为偶函数,为奇函数 3分
所有的基本事件包括两类:一类为两张卡片上写的函数均为奇函数;另一类为两张卡片上写的函数为一个是奇函数,一个为偶函数;故基本事件总数为
满足条件的基本事件为两张卡片上写的函数均为奇函数,故满足条件的基本事件个数为
故所求概率为 6分
(Ⅱ)可取1,2,3,4.
,
; 9分
故的分布列为
1 | 2 | 3 | 4 | |
12分
【题目】某校举行“青少年禁毒”知识竞赛网上答题,高二年级共有500名学生参加了这次竞赛.为了解本次竞赛成绩情况,从中抽取了100名学生的成绩进行统计.请你解答下列问题:
(1)根据下面的频率分布表和频率分布直方图,求出a+d和b+c的值;
(2)若成绩不低于90分的学生就能获奖,问所有参赛学生中获奖的学生约为多少人?
分组 | 频数 | 频率 |
[60,70) | 10 | 0.1 |
[70,80) | 22 | 0.22 |
[80,90) | a | 0.38 |
[90,100] | 30 | c |
合计 | 100 | d |