题目内容
矩形ABCD(AB≤BC)中,AC=2,沿对角线AC把它折成直二面角B-AC-D后,BD=,求AB、BC的长.
翰林汇
翰林汇
翰林汇AB=,BC=
如图,
分别过B、D作BE⊥AC于E,DF⊥AC于F,
设∠BAC=θ,则AB=ACcosθ=2cosθ,
BE=DE=ABsinθ=sin2θ,
AE=ABcosθ=2cos2θ∴EF=AC-2AE
=2=-2cos2θ
折叠后,在平面ACD内过E作EG∥FD,且EG=FD,连接DG、BG、BD,则∠BEG为二面角B-AC-D的平面角,∴∠BEG=90°
于是BG=BE=sin2θ=2sin2θ
∴BG2+DG2=BD2,即:(2sin2θ)2+(-2cos2θ)2=5
∴4(cos2θ)2=1,∴cos2θ=±,
∵AB≤BC,∴cos2θ=-∴cosθ=,
故AB=,BC=
分别过B、D作BE⊥AC于E,DF⊥AC于F,
设∠BAC=θ,则AB=ACcosθ=2cosθ,
BE=DE=ABsinθ=sin2θ,
AE=ABcosθ=2cos2θ∴EF=AC-2AE
=2=-2cos2θ
折叠后,在平面ACD内过E作EG∥FD,且EG=FD,连接DG、BG、BD,则∠BEG为二面角B-AC-D的平面角,∴∠BEG=90°
于是BG=BE=sin2θ=2sin2θ
∴BG2+DG2=BD2,即:(2sin2θ)2+(-2cos2θ)2=5
∴4(cos2θ)2=1,∴cos2θ=±,
∵AB≤BC,∴cos2θ=-∴cosθ=,
故AB=,BC=
练习册系列答案
相关题目