题目内容
【题目】已知函数f(x)= .
(1)计算f(3),f(4),f( )及f( )的值;
(2)由(1)的结果猜想一个普遍的结论,并加以证明;
(3)求值f(1)+f(2)+…+f(2017)+f( )+f( )+…+f( ).
【答案】
(1)解:
(2)解:猜想: .证明如下:
因为 ,所以 ,
所以
(3)解:因为 ,
所以 ,…, ,
又 ,所以f(1)=1,
故 =1+2016×2=4 033
【解析】(1)代值计算即可,(2)猜想: ,根据条件证明即可,(3)由(2)的结论可得.
【考点精析】认真审题,首先需要了解归纳推理(根据一类事物的部分对象具有某种性质,退出这类事物的所有对象都具有这种性质的推理,叫做归纳推理).
练习册系列答案
相关题目
【题目】某媒体对“男女同龄退休”这一公众关注的问题进行 了民意调査,右表是在某单位得到的数据(人数):
赞同 | 反对 | 合计 | |
男 | 5 | 6 | 11 |
女 | 11 | 3 | 14 |
合计 | 16 | 9 | 25 |
附表:
P(K2≥K) | 0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 |
k | 2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
.
(1 )能否有90%以上的把握认为对这一问题的看法与性别有关?
【答案】解:解:K2= ≈2.932>2.706,
由此可知,有90%的把握认为对这一问题的看法与性别有关
(1)进一步调查:(ⅰ)从赞同“男女同龄退休”16人中选出3人进行陈述发言,求事件“男士和女士各至少有1人发言”的概率; (ⅱ)从反对“男女同龄退休”的9人中选出3人进行座谈,设参加调査的女士人数为X,求X的分布列和期望.