题目内容

16.已知α、β均为锐角,且cosα=$\frac{4}{5},cos(α+β)=-\frac{5}{13}$,求sinβ的值.

分析 由已知可求sinα,sin(α+β)的值,又β=(α+β)-α,利用两角差的正弦函数公式即可求值.

解答 解:∵α为锐角,$cosα=\frac{4}{5}$,∴$sinα=\sqrt{1-{{cos}^2}α}=\frac{3}{5}$…(2分)
∵α、β为锐角,∴$α+β∈(0,π),而cos(α+β)=-\frac{5}{13}$,
∴$sin(α+β)=\sqrt{1-{{cos}^2}(α+β)}=\frac{12}{13}$(4分)     
 又∵β=(α+β)-α…(5分)
∴sinβ=sin(α+β)cosα-cos(α+β)sinα…(6分)
=$\frac{12}{13}×\frac{4}{5}-(-\frac{5}{13})×\frac{3}{5}=\frac{63}{65}$.…(8分)

点评 本题主要考查了同角三角函数关系式,两角差的正弦函数公式的应用,属于基本知识的考查.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网