题目内容
8.已知数列{an}与{bn}满足:a1+a2+a3+…+an=log2bn(n∈N*).若{an}为等差数列,且a1=2,b3=64b2.(Ⅰ)求an与bn;
(Ⅱ)设cn═(an+n+1)•2${\;}^{{a}_{n}-2}$,求数列{cn}的前n项和Tn.
分析 (Ⅰ)通过a3=$lo{g}_{2}\frac{{b}_{3}}{{b}_{2}}$及a1=2可得d=2,进而可得an=2n,利用a1+a2+a3+…+an=log2bn可得bn=2n(n+1);
(Ⅱ)通过(I)及cn═(an+n+1)•2${\;}^{{a}_{n}-2}$可得Tn、4Tn的表达式,利用错位相减法计算即得结论.
解答 解:(Ⅰ)由已知可得:a1+a2+a3=log2b3,a1+a2=log2b2,
两式相减可得:a3=$lo{g}_{2}\frac{{b}_{3}}{{b}_{2}}$=log264=6,
∵a1=2,∴d=2,∴an=2n,
∵a1+a2+a3+…+an=$2•\frac{n(n+1)}{2}$=n(n+1)=log2bn,
∴bn=2n(n+1);
(Ⅱ)由题意cn═(an+n+1)•2${\;}^{{a}_{n}-2}$=(3n+1)4n-1,
∴Tn=4+7•4+10•42+…+(3n+1)•4n-1,
4Tn=4•4+7•42+10•43+…+(3n+1)•4n,
两式相减得:-3Tn=4+3•4+3•42+…+3•4n-1-(3n+1)•4n
=4+3(4+42+…+4n-1)-(3n+1)•4n
=4+3•$\frac{4(1-{4}^{n-1})}{1-3}$-(3n+1)•4n,
整理得:Tn=n•4n(n∈N*).
点评 本题考查求数列的通项及前n项和公式,利用错位相减法是解决本题的关键,注意解题方法的积累,属于中档题.
练习册系列答案
相关题目
16.二次函数y=kx2(x>0)的图象在点(an,an2)处的切线与x轴交点的横坐标为an+1,n为正整数,a1=$\frac{1}{3}$,若数列{an}的前n项和为Sn,则S5=( )
A. | $\frac{3}{2}[{1-{{({\frac{1}{3}})}^5}}]$ | B. | $\frac{1}{3}[{1-{{({\frac{1}{3}})}^5}}]$ | C. | $\frac{2}{3}[{1-{{({\frac{1}{2}})}^5}}]$ | D. | $\frac{3}{2}[{1-{{({\frac{1}{2}})}^5}}]$ |
18.已知不存在整数x使不等式(ax-a2-4)(x-4)<0成立,则实数a的取值范围为( )
A. | (0,+∞) | B. | (0,2] | C. | [1,2] | D. | [1,4] |