题目内容
【题目】已知函数.
(1)求证:当时,;
(2)若对任意存在和使成立,求实数的最小值.
【答案】(1)见解析;(2)
【解析】
(1)不等式等价于,设,利用导数可证恒成立,从而原不等式成立.
(2)由题设条件可得在上有两个不同零点,且,利用导数讨论的单调性后可得其最小值,结合前述的集合的包含关系可得的取值范围.
(1)设,则,
当时,由,所以在上是减函数,
所以,故.
因为,所以,所以当时,.
(2)由(1)当时,;
任意,存在和使成立,
所以在上有两个不同零点,且,
(1)当时,在上为减函数,不合题意;
(2)当时,,
由题意知在上不单调,
所以,即,
当时,,时,,
所以在上递减,在上递增,
所以,解得,
因为,所以成立,
下面证明存在,使得,
取,先证明,即证,
令,则在时恒成立,
所以成立,
因为,
所以时命题成立.
因为,所以.
故实数的最小值为.
练习册系列答案
相关题目