题目内容

已知{an}是正数组成的数列,a1=1,且点(,an+1)(n∈N*)在函数yx2+1的图象上.(Ⅰ)求数列{an}的通项公式;(Ⅱ)若列数{bn}满足b1=1,bn+1bn+2an,求证:bn            ·bn+2b2n+1.
(Ⅰ)an=n  (Ⅱ)  见解析
(Ⅰ)由已知得an+1an+1,即an+1an=1,
a1=1,所以数列{an}是以1为首项,公差为1的等差数列,故an=1+(a-1)×1=n.
(Ⅱ)由(Ⅰ)知:ann从而bn+1bn=2n.
bn=(bnbn-1)+(bn-1bn-2)+…+(b2b1)+b1=2n-1+2n-2+…+2+1==2n-1.
因为bn·bn+2-b=(2n-1)(2n+2-1)-(2n-1-1)2
=(22n+2-2n+2-2n+1)-(22n+2-2-2n+1-1)=-5·2n+4·2n=-2n<0,
所以bn·bn+2<b.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网