题目内容
如图,AB,CD是半径为a的圆O的两条弦,它们相交于AB的中点P, PD=,∠OAP=30°,则CP=_____
分析:利用垂径定理及其相交弦定理即可得出。
解答:
∵OP⊥AB,∴AP=PB.
在Rt△OAP中,
∵∠OAP=30°,OA=a,
∴AP=acos30°=/2a,
由相交弦定理可得:
CP?PD=AP?PB,
∴CP=(/2a)2/(2a/3)=9a/8
点评:熟练掌握圆的垂径定理及其相交弦定理是解题的关键。
练习册系列答案
相关题目