题目内容
【题目】2018年12月18日上午10时,在人民大会堂举行了庆祝改革开放40周年大会.40年众志成城,40年砥砺奋进,40年春风化雨,中国人民用双手书写了国家和民族发展的壮丽史诗.会后,央视媒体平台,收到了来自全国各地的纪念改革开放40年变化的老照片,并从众多照片中抽取了100张照片参加“改革开放40年图片展”,其作者年龄集中在之间,根据统计结果,做出频率分布直方图如下:
(Ⅰ)求这100位作者年龄的样本平均数和样本方差(同一组数据用该区间的中点值作代表);
(Ⅱ)由频率分布直方图可以认为,作者年龄X服从正态分布,其中近似为样本平
均数,近似为样本方差.
(i)利用该正态分布,求;
(ii)央视媒体平台从年龄在和的作者中,按照分层抽样的方法,抽出了7人参加“纪念改革开放40年图片展”表彰大会,现要从中选出3人作为代表发言,设这3位发言者的年龄落在区间的人数是Y,求变量Y的分布列和数学期望.附:,若,则,
【答案】(1),;(2)(i)0.3415;(ii)详见解析.
【解析】
(1) 利用离散型随机变量的期望与方差的公式计算可得答案;
(2)(i)由(1)知,),从而可求出;
(ii)可得可能的取值为0,1,2,3,分别求出其概率,可列出的分布列,求出其Y的数学期望.
解:(1)这100位作者年龄的样本平均数和样本方差分别为
(2)(i)由(1)知,,
从而;
(ii)根据分层抽样的原理,可知这7人中年龄在内有3人,在内有4人,
故可能的取值为0,1,2,3
,,
所以的分布列为
Y | 0 | 1 | 2 | 3 |
P |
所以Y的数学期望为
【题目】2018以来,依托用户碎片化时间的娱乐需求、分享需求以及视频态的信息负载力,短视频快速崛起;与此同时,移动阅读方兴未艾,从侧面反应了人们对精神富足的一种追求,在习惯了大众娱乐所带来的短暂愉悦后,部分用户依旧对有着传统文学底蕴的严肃阅读青睐有加.某读书APP抽样调查了非一线城市和一线城市各100名用户的日使用时长(单位:分钟),绘制成频率分布直方图如下,其中日使用时长不低于60分钟的用户记为“活跃用户”.
(1)请填写以下列联表,并判断是否有99%的把握认为用户活跃与否与所在城市有关?
活跃用户 | 不活跃用户 | 合计 | |
城市 | |||
城市 | |||
合计 |
临界值表:
0.050 | 0.010 | |
3.841 | 6.635 |
参考公式:.
(2)以频率估计概率,从城市中任选2名用户,从城市中任选1名用户,设这3名用户中活跃用户的人数为,求的分布列和数学期望.
【题目】经观测,某昆虫的产卵数与温度有关,现将收集到的温度和产卵数的10组观测数据作了初步处理,得到如图的散点图及一些统计量表.
275 | 731.1 | 21.7 | 150 | 2368.36 | 30 |
表中,
(1)根据散点图判断,,与哪一个适宜作为与之间的回归方程模型?(给出判断即可,不必说明理由)
(2)根据(1)的判断结果及表中数据.
①试求关于回归方程;
②已知用人工培养该昆虫的成本与温度和产卵数的关系为,当温度(取整数)为何值时,培养成本的预报值最小?
附:对于一组数据,,,其回归直线的斜率和截距的最小二乘估计分别为,.
【题目】某水果经销商为了对一批刚上市水果进行合理定价,将该水果按事先拟定的价格进行试销,得到一组销售数据,如表所示:
试销单价(元/公斤) | 16 | 17 | 18 | 19 | 20 |
日销售量(公斤) | 168 | 146 | 120 | 90 | 56 |
(1)已知变量具有线性相关关系,求该水果日销售量(公斤)关于试销单价(元/公斤)的线性回归方程,并据此分析销售单价时,日销售量的变化情况;
(2)若该水果进价为每公斤元,预计在今后的销售中,日销售量和售价仍然服从(1)中的线性相关关系,该水果经销商如果想获得最大的日销售利润,此水果的售价应定为多少元?
(参考数据及公式:,,,线性回归方程,,)