题目内容
【题目】经观测,某昆虫的产卵数与温度有关,现将收集到的温度和产卵数的10组观测数据作了初步处理,得到如图的散点图及一些统计量表.
275 | 731.1 | 21.7 | 150 | 2368.36 | 30 |
表中,
(1)根据散点图判断,,与哪一个适宜作为与之间的回归方程模型?(给出判断即可,不必说明理由)
(2)根据(1)的判断结果及表中数据.
①试求关于回归方程;
②已知用人工培养该昆虫的成本与温度和产卵数的关系为,当温度(取整数)为何值时,培养成本的预报值最小?
附:对于一组数据,,,其回归直线的斜率和截距的最小二乘估计分别为,.
【答案】(1)更适宜;(2)①;②14.
【解析】
(1)根据样本点分布在一条指数函数的周围,可确定适宜的回归模型.
(2)①令则,根据已知数据求出,得回归模型;②由①得,由二次函数性质得最小值.
解:(1)根据散点图判断,看出样本点分布在一条指数函数的周围,所以适宜作为与之间的回归方程模型;
(2)①令则
∴
②
∴时,培养成本的预报值最小.
【题目】高铁、网购、移动支付和共享单车被誉为中国的“新四大发明”,彰显出中国式创新的强劲活力.某移动支付公司从某市移动支付用户中随机抽取100人进行调查,得到如下数据:
每周移动支付次数 | 1次 | 2次 | 3次 | 4次 | 5次 | 6次及以上 |
男 | 10 | 8 | 7 | 3 | 2 | 15 |
女 | 5 | 4 | 6 | 4 | 6 | 30 |
总计 | 15 | 12 | 13 | 7 | 8 | 45 |
(1)把每周使用移动支付6次及以上的用户称为“移动支付达人”,按分层抽样的方法,从参与调查的“移动支付达人”中,随机抽取6人,求抽取的6人中,男、女用户各多少人;
(2)把每周使用移动支付超过3次的用户称为“移动支付活跃用户”,根据表格中的数据完成下列列联表,问:能否有的把握认为“移动支付活跃用户”与性别有关?
非移动支付活跃用户 | 移动支付活跃用户 | 总计 | |
男 | |||
女 | |||
总计 |
附参照表:
0.10 | 0.05 | 0.025 | 0.01 | |
2.706 | 3.841 | 5.024 | 6.635 |
参考公式:,其中