题目内容
【题目】已知点(x,y)是区域 , (n∈N*)内的点,目标函数z=x+y,z的最大值记作zn . 若数列{an}的前n项和为Sn , a1=1,且点(Sn , an)在直线zn=x+y上.
证明:数列{an﹣2}为等比数列
【答案】解:∵目标函数对应直线l:z=x+y,
区域,(n∈N*)表示以x轴、y轴和直线x+2y=2n为三边的三角形,
∴当x=2n,y=0时,z的最大值zn=2n
∵(Sn , an)在直线zn=x+y上
∴zn=Sn+an , 可得Sn=2n﹣an ,
当n≥2时,可得an=Sn﹣Sn﹣1=(2n﹣an)﹣[2(n﹣1)﹣an﹣1]
化简整理,得2an=an﹣1+2
因此,an﹣2=(an﹣1+2)﹣2=(an﹣1﹣2)
当n=1时,an﹣2=a1﹣2=﹣1
∴数列{an﹣2}是以﹣1为首项,公比q=的等比数列;
【解析】根据线性规划原理,可得z的最大值zn=2n,从而得到Sn=2n﹣an . 运用数列前n项和Sn与an的关系,算出2an=an﹣1+2,由此代入数列{an﹣2}再化简整理,即可得到{an﹣2}是以﹣1为首项,公比q=的等比数列;
【考点精析】解答此题的关键在于理解等比关系的确定的相关知识,掌握等比数列可以通过定义法、中项法、通项公式法、前n项和法进行判断.
【题目】某班级举行一次知识竞赛活动,活动分为初赛和决赛两个阶段。现将初赛答卷成绩(得分均为整数,满分为100分)进行统计,制成如下频率分布表.
分数(分数段) | 频数(人数) | 频率 |
[60,70) | ① | 0.16 |
[70,80) | 22 | ② |
[80,90) | 14 | 0.28 |
[90,100] | ③ | ④ |
合 计 | 50 | 1 |
(1)填充频率分布表中的空格(在解答中直接写出对应空格序号的答案);
(2)决赛规则如下:参加决赛的每位同学依次口答4道小题,答对2道题就终止答题,并获得一等奖。如果前三道题都答错,就不再答第四题。某同学进入决赛,每道题答对的概率的值恰好与频率分布表中不少于80分的频率的值相同.
①求该同学恰好答满4道题而获得一等奖的概率;
②记该同学决赛中答题个数为,求的分布列及数学期望.