题目内容
【题目】某商场一年购进某种货物900吨,每次都购进x吨,运费为每次9万元,一年的总存储费用为9x万元.
(1)要使一年的总运费与总存储费用之和最小,则每次购买多少吨?
(2)要使一年的总运费与总存储费用之和不超过585万元,则每次购买量在什么范围?
【答案】
(1)解:设每次都购买x吨,则需要购买 次,
∵运费为9万/次,一年的总存储费用为9x万元,
∴一年的总运费与总存储费用之和为9× +9x万元
∵9× +9x≥540,当且仅当9× =9x时取等号
∴x=30吨时,一年的总运费与总存储费用之和最小
(2)解:由题意,9× +9x≤585,得20≤x≤45.
∴每次购买量在大于或等于20吨且小于或等于45吨的范围内
【解析】(1)先设某公司每次都购买x吨,由于一年购买某种货物900吨,得出需要购买的次数,从而求得一年的总运费与总存储费用之和,最后利用基本不等式求得一年的总运费与总存储费用之和最小即可.(2)根据一年的总运费与总存储费用之和不超过585万元,可建立不等式,从而可求次购买量的范围
【题目】某学校研究性学习小组对该校高三学生视力情况进行调查,在高三的全体名学生中随机抽取了名学生的体检表,并得到如图的频率分布直方图.
年级名次 是否近视 | ||
近视 | ||
不近视 |
(1)若直方图中后四组的频数成等差数列,试估计全年级视力在以下的人数;
(2)学习小组成员发现,学习成绩突出的学生,近视的比较多,为了研究学生的视力与学习成绩是否有关系,对年级名次在名和名的学生进行了调查,得到右表中数据,根据表中的数据,能否在犯错的概率不超过的前提下认为视力与学习成绩有关系?
(3)在(Ⅱ)中调查的名学生中,按照分层抽样在不近视的学生中抽取了人,进一步调查他们良好的护眼习惯,并且在这人中任取人,记名次在的学生人数为,求的分布列和数学期望.
7.879 |
附: