题目内容
14.已知集合A=$\left\{{x\left|{{x^2}-2x>0}\right.}\right\},B=\left\{{x\left|{-\sqrt{5}<x<\sqrt{5}}\right.}\right\}$,则( )A. | A∪B=R | B. | A∩B=∅ | C. | B⊆A | D. | A⊆B |
分析 求出A中不等式的解集确定出A,确定出A与B的交集、并集,即可做出判断.
解答 解:由A中不等式变形得:x(x-2)>0,
解得:x<0或x>2,即A={x|x<0或x>2},
∵B={x|-$\sqrt{5}$<x<$\sqrt{5}$},
∴A∩B={x|-$\sqrt{5}$<x<0或2<x<$\sqrt{5}$},A∪B=R,
故选:A.
点评 此题考查了交集及其运算,熟练掌握交集的定义是解本题的关键.
练习册系列答案
相关题目
5.设向量$\overrightarrow{a}$=(1,2),$\overrightarrow{a}$+$\overrightarrow{b}$=(0,3),则向量$\overrightarrow{c}$=(1,5)用$\overrightarrow{a}$,$\overrightarrow{b}$表示为( )
A. | $\overrightarrow{c}$=$\overrightarrow{a}$+$\overrightarrow{b}$ | B. | $\overrightarrow{c}$=$\overrightarrow{a}$+2$\overrightarrow{b}$ | C. | $\overrightarrow{c}$=2$\overrightarrow{a}$+$\overrightarrow{b}$ | D. | $\overrightarrow{c}$=$\overrightarrow{a}$-$\overrightarrow{b}$ |
9.直线:xsin30°+ycos150°+2=0的斜率是( )
A. | $\frac{{\sqrt{3}}}{3}$ | B. | $\sqrt{3}$ | C. | $-\frac{{\sqrt{3}}}{3}$ | D. | $-\sqrt{3}$ |
19.设p:f(x)=x2+2mx+1在(0,+∞)内单调递增,q:m≥-5,则p是q的( )
A. | 必要不充分条件 | B. | 充分不必要条件 | ||
C. | 充分必要条件 | D. | 既不充分也不必要条件 |
3.将函数y=sin(x+$\frac{π}{4}$)的图象上各点的纵坐标不变,横坐标缩短到原来的$\frac{1}{2}$倍,再向右平移$\frac{π}{4}$个单位,所得到的图象解析式是( )
A. | y=sin2x | B. | y=sin$\frac{1}{2}x$ | C. | y=sin(2x+$\frac{π}{4}$) | D. | y=sin(2x-$\frac{π}{4}$) |