ÌâÄ¿ÄÚÈÝ
2£®ÒÑÖªÊýÁÐ{an}ÖУ¬a1=t£¨t¡Ù0ÇÒt¡Ù1£©£¬a2=t2£¬ÇÒµ±x=tʱ£¬º¯Êýf£¨x£©=$\frac{1}{2}$£¨an-an-1£©x2-£¨an+1-an£©x£¨n¡Ý2£¬n¡ÊN*£©È¡µÃ¼«Öµ£®£¨1£©ÇóÖ¤£ºÊýÁÐ{an+1-an}ÊǵȱÈÊýÁУ»
£¨2£©ÇóÊýÁÐ{an]µÄͨÏʽ£»
£¨3£©µ±t=-$\sqrt{\frac{7}{10}}$ʱ£¬Èôbn=anln|an|£¬ÊýÁÐ{bn}ÖÐÊÇ·ñ´æÔÚ×î´óÏÈç¹û´æÔÚ£¬ËµÃ÷Êǵڼ¸ÏÈç¹û²»´æÔÚ£¬ËµÃ÷ÀíÓÉ£®
·ÖÎö £¨1£©¸ù¾Ýµ±x=tʱ£¬f£¨x£©=$\frac{1}{2}$£¨an-an-1£©x2-£¨an+1-an£©x£¨n¡Ý2£©È¡µÃ¼«Öµ£¬Çóµ¼£¬µÃµ½f'£¨t£©=0£¬¼´an-an-1£©t=an+1-an£¨n¡Ý2£©ÕûÀí¿ÉÖ¤£»
£¨2£©Í¨¹ý£¨1£©¡¢ÀûÓÃÀÛ¼Ó·¨¼´¿ÉÇóµÃÊýÁÐ{an}µÄͨÏʽ£»
£¨3£©¸ù¾Ý£¨2£©È¥¾ø¶ÔÖµ·ûºÅ¿ÉÇóÊýÁÐ{bn}µÄͨÏʽ£¬¶Ôn·ÖÆæżÌÖÂÛ¼´µÃ½áÂÛ£®
½â´ð £¨1£©Ö¤Ã÷£ºÁîf¡ä£¨t£©=£¨an-an-1£©t-£¨an+1-an£©=0£¬
µÃ£º£¨an-an-1£©t=an+1-an£¨n¡Ý2£©£¬
ÓÖa2-a1=t£¨t-1£©£¬t¡Ù0ÇÒt¡Ù1£¬
¡àa2-a1¡Ù0£¬
¡à$\frac{{a}_{n+1}-{a}_{n}}{{a}_{n}-{a}_{n-1}}$=t£¬
¡àÊýÁÐ{an+1-an}ÊÇÊ×ÏîΪt2-t¡¢¹«±ÈΪtµÄµÈ±ÈÊýÁУ»
£¨2£©½â£ºÓÉ£¨1£©Öªan+1-an=tn+1-tn£¬
¡àan-an-1=tn-tn-1£¬
¡àan-1-an-2=tn-1-tn-2£¬
¡
a2-a1=t2-t£¬
ÉÏÃæn-1¸öµÈʽÏà¼Ó²¢ÕûÀíµÃ£ºan=tn£¨t¡Ù0ÇÒt¡Ù1£©£»
£¨3£©½áÂÛ£ºÊýÁÐ{bn}ÖеÄ×î´óÏîΪµÚ5Ï
ÀíÓÉÈçÏ£º
ÓÉ£¨2£©Öªbn=anln|an|=tn•ln|tn|=ntn•ln|t|£®
¡ßt=-$\sqrt{\frac{7}{10}}$£¬¡à-1£¼t£¼0£¬
¡ßµ±nΪżÊýʱbn£¾0£¬µ±nΪÆæÊýʱbn£¼0£¬
¡à×î´óÏî±ØÐëΪÆæÊýÏ
Éè×î´óÏîΪ£ºb2k+1£¬Ôò$\left\{\begin{array}{l}{{b}_{2k+1}¡Ý{b}_{2k-1}}\\{{b}_{2k+1}¡Ý{b}_{2k+3}}\end{array}\right.$£¬
¡à$\left\{\begin{array}{l}{£¨2k+1£©•{t}^{2k+1}•ln|t|¡Ý£¨2k-1£©•{2}^{2k-1}•ln|t|}\\{£¨2k+1£©•{t}^{2k+1}•ln|t|¡Ý£¨2k+3£©•{t}^{2k+3}•ln|t|}\end{array}\right.$£¬
ÕûÀíµÃ£º$\left\{\begin{array}{l}{£¨2k+1£©•{t}^{2}¡Ý2k-1}\\{2k+1¡Ý£¨2k+3£©•{t}^{2}}\end{array}\right.$£¬
½«t=-$\sqrt{\frac{7}{10}}$´úÈëÉÏʽ£¬½âµÃ£º$\frac{11}{6}$¡Ük¡Ü$\frac{17}{6}$£¬
¡àk=2£¬¼´ÊýÁÐ{bn}ÖеÄ×î´óÏîΪµÚ5Ï
µãÆÀ ±¾Ì⿼²éµÈ±ÈÊýÁеĶ¨ÒåºÍͨÏʽ£¬ÀÛ¼Ó·¨ÇóÊýÁÐͨÏʽ£¬ÌåÏÖÁË·ÖÀàÌÖÂÛµÄ˼Ï룮ÆäÖÐÎÊÌ⣨3£©ÊÇÒ»¸ö¿ª·ÅÐÔÎÊÌ⣬¿¼²éÁËͬѧÃǹ۲졢ÍÆÀíÒÔ¼°´´ÔìÐԵطÖÎöÎÊÌâ¡¢½â¾öÎÊÌâµÄÄÜÁ¦£®×¢Òâ½âÌâ·½·¨µÄ»ýÀÛ£¬ÊôÓÚÄÑÌ⣮
A£® | $\frac{\sqrt{5}}{5}$ | B£® | $\frac{2\sqrt{5}}{5}$ | C£® | $\frac{\sqrt{5}}{5}$»ò-$\frac{\sqrt{5}}{5}$ | D£® | $\frac{2\sqrt{5}}{5}$»ò-$\frac{2\sqrt{5}}{5}$ |
A£® | 4 | B£® | $\frac{1}{4}$ | C£® | 0»ò$\frac{1}{4}$ | D£® | D¡¢ |
A£® | A¡ÈB=R | B£® | A¡ÉB=∅ | C£® | B⊆A | D£® | A⊆B |
A£® | 123 | B£® | 10 110 | C£® | 4724 | D£® | 7 857 |