ÌâÄ¿ÄÚÈÝ
ÒÑÖªÊýÁÐ{an}µÄÇ°nÏîºÍSn=2+(n-1)(
)n-1(n¡ÊN*)£¬Ôò´æÔÚÊýÁÐ{xn}£¬{yn}£¬Ê¹µÃ£º£¨¡¡¡¡£©
1 |
2 |
A£®an=xn+yn£¬n¡ÊN*£¬ÆäÖÐ{xn}£¬{yn}ΪµÈ²îÊýÁÐ |
B£®an=xnyn£¬n¡ÊN*£¬ÆäÖÐ{xn}£¬{yn}ΪµÈ±ÈÊýÁÐ |
C£®an=xn+yn£¬n¡ÊN*£¬ÆäÖÐ{xn}ΪµÈ²îÊýÁУ¬{yn}ΪµÈ±ÈÊýÁÐ |
D£®an=xnyn£¬n¡ÊN*£¬ÆäÖÐ{xn}ΪµÈ²îÊýÁУ¬{yn}ΪµÈ±ÈÊýÁÐ |
µ±n=1ʱ£¬a1=S1=a£¬
µ±n¡Ý2ʱ£¬an=Sn-Sn-1
=[2+(n-1)(
)n-1]-[2+(n-2)(
)n-2]
=(n-1)(
)n-1-(n-2)(
)n-2
=(n-1)(
)n-1-(2n-4)(
)n-1
=(3-n)(
)n-1
Áîxn=3-n£¬yn=(
)n-1
Ôò{xn}ΪµÈ²îÊýÁУ¬{yn}ΪµÈ±ÈÊýÁÐ
¹Êan=xnyn£¬n¡ÊN*£¬ÆäÖÐ{xn}ΪµÈ²îÊýÁУ¬{yn}ΪµÈ±ÈÊýÁÐ
¹ÊÑ¡D
µ±n¡Ý2ʱ£¬an=Sn-Sn-1
=[2+(n-1)(
1 |
2 |
1 |
2 |
=(n-1)(
1 |
2 |
1 |
2 |
=(n-1)(
1 |
2 |
1 |
2 |
=(3-n)(
1 |
2 |
Áîxn=3-n£¬yn=(
1 |
2 |
Ôò{xn}ΪµÈ²îÊýÁУ¬{yn}ΪµÈ±ÈÊýÁÐ
¹Êan=xnyn£¬n¡ÊN*£¬ÆäÖÐ{xn}ΪµÈ²îÊýÁУ¬{yn}ΪµÈ±ÈÊýÁÐ
¹ÊÑ¡D
Á·Ï°²áϵÁдð°¸
Ïà¹ØÌâÄ¿