题目内容
已知数列{an}为等比数列,且a2=6,6a1+a3=30.
(Ⅰ)求an.
(Ⅱ)设bn=log3a1+log3a2+…+log3an,若等比数列{an}的公比q>2,求数列{bn}的通项公式.
(Ⅰ)求an.
(Ⅱ)设bn=log3a1+log3a2+…+log3an,若等比数列{an}的公比q>2,求数列{bn}的通项公式.
(1)∵数列{an}为等比数列,且a2=6,6a1+a3=30.
∴
,
解得
,或
,
∴an=3×2n-1,或an=2×3n-1.
(2)∵等比数列{an}的公比q>2,∴
,an=2×3n-1.
∴bn=log3a1+log3a2+…+log3an
=log3[(2×30)×(2×3)×(2×32)×…×(2×3n-1)],
=log32n+log33
=nlog23+
.
∴bn=nlog32+
.
∴
|
解得
|
|
∴an=3×2n-1,或an=2×3n-1.
(2)∵等比数列{an}的公比q>2,∴
|
∴bn=log3a1+log3a2+…+log3an
=log3[(2×30)×(2×3)×(2×32)×…×(2×3n-1)],
=log32n+log33
n(n-1) |
2 |
=nlog23+
n(n-1) |
2 |
∴bn=nlog32+
n(n-1) |
2 |

练习册系列答案
相关题目