题目内容

【题目】设数列{an}的前n项和为Sn . 已知a1=1, =an+1 n2﹣n﹣ ,n∈N*
(1)求数列{an}的通项公式;
(2)设数列{bn}满足an﹣an1=bna ,求数列{bn}的n前项和Tn
(3)是否存在实数λ,使得不等式λa +a + ≥0恒成立,若存在,求出λ的取值范围;若不存在,请说明理由.

【答案】
(1)解:∵ ,n∈N*

∴当n≥2时,

由①﹣②,得

2Sn﹣2Sn1=nan+1﹣(n﹣1)an﹣n(n+1).

∵2an=2Sn﹣2Sn1

∴2an=nan+1﹣(n﹣1)an﹣n(n+1),

∴数列 是以首项为 ,公差为1的等差数列.

,当n=1时,上式显然成立.


(2)an﹣an1=bna bn= = =

∴Tn= + + +…+ .①

Tn= + + +…+ .②

由①﹣②,得

Tn= +2( + + +…+ )﹣

= +2

∴Tn= ,n∈N+


(3)λa +a + ≥0λ(2n )+2n+ ≥0,(n=2,4,6,8,10…)λ(2n )+(2n2+2≥0,

令t=2n ,则t≥

原不等式λt+t2+2≤0≥﹣(t+ ).

∵t+ 在( ,+∞)上单调递增,

∴t+ + =

∴λ≥﹣


【解析】(1)需要分类讨论:n=1和n≥2两种情况下的通项公式.当n≥2时,根据已知条件可以推知2Sn﹣2Sn1=nan+1﹣(n﹣1)an﹣n(n+1).2an=nan+1﹣(n﹣1)an﹣n(n+1),由着两个式子可以得到数列 是以首项为 ,公差为1的等差数列.由此写出通项公式即可;(2)由an﹣an1=bna 可得bn= = = .再利用“错位相减法”与等比数列的求和公式即可得出;(3)将已知不等式变形为λ(2n )+(2n2+2≥0,然后结合函数的单调性来求λ的取值范围.
【考点精析】解答此题的关键在于理解数列的前n项和的相关知识,掌握数列{an}的前n项和sn与通项an的关系

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网