题目内容
已知函数
.
(1)当
时,求函数
的单调增区间;
(2)当
时,求函数
在区间
上的最小值;
(3)记函数
图象为曲线
,设点
,
是曲线
上不同的两点,点
为线段
的中点,过点
作
轴的垂线交曲线
于点
.试问:曲线
在点
处的切线是否平行于直线
?并说明理由.
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824045130387577.png)
(1)当
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824045130418399.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824045130433292.png)
(2)当
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824045130449422.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824045130465467.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824045130480768.png)
(3)记函数
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/201408240451304962209.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824045130511955.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824045130527855.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824045130543610.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/201408240451305581065.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824045130574826.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824045130589522.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824045130621538.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824045130636543.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824045130667608.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824045130683605.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824045130714266.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824045130730310.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824045130745231.png)
(1)
,(2)
(3)不平行
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824045130761510.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824045130527855.png)
试题分析:(1)利用导数求函数单调区间,分四步:第一步,求定义域,
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824045130792393.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/201408240451308081569.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824045130823481.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824045130855902.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824045130714266.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824045130886447.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824045130761510.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824045130917387.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824045130948550.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824045130964551.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824045130979384.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824045130995433.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/201408240451310111226.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/201408240451310421137.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824045131057858.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824045131073671.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824045131089661.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/201408240451311041048.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824045131104300.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824045131120588.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824045130465467.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824045131167600.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824045131182712.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824045130418399.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824045131104300.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824045131229658.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824045130387577.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824045130418399.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824045130433292.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824045130449422.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824045130465467.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824045130543610.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/201408240451305581065.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824045130574826.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824045130589522.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824045130621538.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824045130636543.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824045130667608.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824045130683605.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824045130714266.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824045130745231.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824045131510729.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824045131525654.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824045131525654.png)
试题解析:(1)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/201408240451315571442.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824045131588789.png)
因为
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824045131603398.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824045130792393.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824045130730310.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824045130433292.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824045130714266.png)
所以
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824045130886447.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824045130761510.png)
(2)当
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824045130917387.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824045130948550.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824045130964551.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824045130979384.png)
①当
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824045130995433.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/201408240451310111226.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/201408240451310421137.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824045131057858.png)
所以
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824045131073671.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824045131089661.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/201408240451311041048.png)
②当
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824045131104300.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824045131120588.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824045130465467.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824045131167600.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824045131182712.png)
所以
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824045130418399.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824045131104300.png)
③当
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824045131229658.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824045130387577.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824045130418399.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824045130433292.png)
所以
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824045130449422.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824045130465467.png)
综上,函数
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824045130480768.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/201408240451321652204.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824045130511955.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824045130527855.png)
10分
(3)设
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824045130543610.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/201408240451305581065.png)
直线AB的斜率
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824045130574826.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824045130730310.png)
=
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824045130589522.png)
曲线C在点N处的切线斜率
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824045130621538.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824045130636543.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824045130667608.png)
假设曲线C在点N处的切线平行于直线AB,则
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824045130683605.png)
即
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824045130714266.png)
所以,不妨设
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824045130745231.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824045131510729.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824045131525654.png)
令
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824045132446697.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824045132461716.png)
所以
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/201408240451324772086.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824045132493426.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824045132508425.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824045132539501.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824045132555492.png)
所以曲线C在点N处的切线不平行于直线AB. 16分
![](http://thumb.zyjl.cn/images/loading.gif)
练习册系列答案
相关题目