题目内容
已知函数
.
(1)若直线
与
的反函数的图象相切,求实数k的值;
(2)设
,讨论曲线
与曲线
公共点的个数;
(3)设
,比较
与
的大小,并说明理由.
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824045044725714.png)
(1)若直线
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824045044741559.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824045044756450.png)
(2)设
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824045044788397.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824045044803596.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824045044834731.png)
(3)设
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824045044850402.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824045044866724.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824045044881745.png)
(1) ![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824045044897450.png)
(2)见解析;
(3)![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/201408240450449281078.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824045044897450.png)
(2)见解析;
(3)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/201408240450449281078.png)
(1)
的反函数为
.
设直线
与
的图象在
处相切,则
,解得
.
(2)曲线
与
的公共点个数等于曲线
与y=m的公共点个数.
令
,则
,∴
.
当
时,
,
在(0,2)上单调递减;
当
时,
,
在(2,+∞)上单调递增,
∴
在(0,+∞)上的最小值为
.
当
时,曲线
与y=m无公共点;
当
,曲线
与y=m恰有一个公共点;
当
时,在区间(0,2)内存在
,使得
,在(2,+∞)内存在
,使得
.
由
的单调性知,曲线
与y=m在(0,+∞)上恰有两个公共点.
综上所述,当x>0时,
若
,曲线
与
没有公共点;
若
,曲线
与
有一个公共点;
若
,曲线
与
有两个公共点.
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/201408240450456147534.jpg)
(3)解法一:可以证明
.事实上,
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/201408240450456461420.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/201408240450456611191.png)
.(*)
令
,
则
,
(当且仅当x=0时等号成立),
∴
在[0,+∞)上单调递增,
∴
时,
.
令
,即得(*)式,结论得证.
解法二:![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/201408240450458331343.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/201408240450458641042.png)
,
设函数
,
则
,
令
,则
(当且仅当x=0时等号成立),
∴
单调递增,
∴当x>0时,
,∴
单调递增.
当x>0时,u(x)>u(0)=0.
令
,得
,
∴
,
因此,
.
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824045044756450.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824045044959644.png)
设直线
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824045044741559.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824045044959644.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824045045006635.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824045045022990.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824045045037671.png)
(2)曲线
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824045045053494.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824045045068546.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824045045084558.png)
令
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824045045100686.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824045045100842.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824045045115513.png)
当
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824045045131611.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824045045146519.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824045045162544.png)
当
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824045045178647.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824045045193637.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824045045162544.png)
∴
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824045045162544.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824045045224652.png)
当
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824045045240626.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824045045084558.png)
当
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824045045271554.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824045045084558.png)
当
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824045045302566.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824045045318594.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824045045334634.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824045045349554.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824045045349637.png)
由
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824045045162544.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824045045084558.png)
综上所述,当x>0时,
若
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824045045240626.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824045045053494.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824045045068546.png)
若
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824045045271554.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824045045053494.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824045045068546.png)
若
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824045045302566.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824045045053494.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824045045068546.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/201408240450456147534.jpg)
(3)解法一:可以证明
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/201408240450449281078.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/201408240450456461420.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/201408240450456611191.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824045045677988.png)
令
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824045045692970.png)
则
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824045045708956.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/201408240450457391298.png)
∴
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824045045755455.png)
∴
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824045044788397.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824045045786718.png)
令
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824045045817425.png)
解法二:
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/201408240450458331343.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/201408240450458641042.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/201408240450458801219.png)
设函数
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824045045895917.png)
则
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824045045911743.png)
令
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824045045926688.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824045045958848.png)
∴
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824045045973551.png)
∴当x>0时,
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824045045989709.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824045046004550.png)
当x>0时,u(x)>u(0)=0.
令
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824045045817425.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824045046036980.png)
∴
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/201408240450460511092.png)
因此,
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/201408240450449281078.png)
![](http://thumb.zyjl.cn/images/loading.gif)
练习册系列答案
相关题目