题目内容
【题目】已知,若在圆上存在点使得成立,则的取值范围为_____.
【答案】或
【解析】
先由PA2+PB2=20得P点轨迹为圆,然后问题转化为两圆有交点,圆心距小于等于半径之和,大于等于半径之差.
:∵圆C:(x-m)2+(y+m)2=9,∴圆心为C(m,-m),半径为3,设P(x,y),则由PA2+PB2=20,得(x+1)2+y2+(x-5)2+y2=20,即x2+y2-4x+3=0,∴(x-2)2+y2=1,在圆C:x2+y2-2mx+2my+2m2-9=0(m∈R)上存在点P使得PA2+PB2=20成立,转化为:圆C:
(x-m)2+(x+m)2=9与圆:(x-2)2+y2=1有交点,转化为:圆心距小于等于两圆半径之和,大于等于两圆半径之差,即3-1≤≤3+1,解得:-2≤m≤0或2≤m≤3.
故答案为:-2≤m≤0或2≤m≤3.
练习册系列答案
相关题目
【题目】在某中学高中某学科竞赛中,该中学100名考生的参赛成绩统计如图所示.
(1)求这100名考生的竞赛平均成绩(同一组中数据用该组区间中点作代表);
(2)记70分以上为优秀,70分及以下为合格,结合频率分布直方图完成下表,并判断是否有99%的把握认为该学科竞赛成绩与性别有关?
合格 | 优秀 | 合计 | |
男生 | 18 | ||
女生 | 25 | ||
合计 | 100 |
附:.
0.050 | 0.010 | 0.005 | |
3.841 | 6.635 | 7.879 |