题目内容
、已知向量
="(1,2),"
=(-2,1),k,t为正实数,向量
=
+(t
+1)
,
=-k
+![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823230809739312.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823230809521307.png)
(1)若
⊥
,求k的最小值;
(2)是否存在正实数k、t,使
∥
? 若存在,求出k的取值范围;若不存在,请说明理由.
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823230809412292.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823230809521307.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823230809536275.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823230809412292.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823230809583242.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823230809521307.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823230809630321.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823230809412292.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823230809739312.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823230809521307.png)
(1)若
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823230809536275.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823230809630321.png)
(2)是否存在正实数k、t,使
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823230809536275.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823230809630321.png)
(1)x=a+(t![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/201408232308100672002.png)
由x⊥y,得x·y=0,即(-2t![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/201408232308100981188.png)
整理得k=
∵t>0,∴k=![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823230810145169.png)
≥2
=2,当且仅当t=1时,k=2.
所以k的最小值为2.
(2)假设存在正实数k,t使x∥y,则(-2t
-1)(-2k+
整理得tk(t
+1)+1=0.
满足上述等式的正实数k、t不存在,所以不存在正实数k、t,使x∥y.
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/201408232308100672002.png)
由x⊥y,得x·y=0,即(-2t
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/201408232308100981188.png)
整理得k=
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823230810114604.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823230810145169.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823230810114604.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823230810192442.png)
所以k的最小值为2.
(2)假设存在正实数k,t使x∥y,则(-2t
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823230809583242.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823230810238913.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823230809583242.png)
满足上述等式的正实数k、t不存在,所以不存在正实数k、t,使x∥y.
(1)利用
⊥
坐标化后建立关于k的方程,然后用t表示出k,从而得到k关于t的函数关系式,再考虑采用函数求最值的方法求k的最值.
(II) 假设存在正实数k,t使
,则(-2t
-1)(-2k+
然后得到关于k,t的方程,判断此方程是否有解即可.
(1)x=a+(t![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/201408232308105042019.png)
由x⊥y,得x·y=0,即(-2t![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/201408232308100981188.png)
整理得k=
∵t>0,∴k=![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823230810145169.png)
≥2
=2,当且仅当t=1时,k=2.
所以k的最小值为2.
(2)假设存在正实数k,t使x∥y,则(-2t
-1)(-2k+
整理得tk(t
+1)+1=0.
满足上述等式的正实数k、t不存在,所以不存在正实数k、t,使x∥y.
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823230809536275.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823230809630321.png)
(II) 假设存在正实数k,t使
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823230810316470.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823230809583242.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823230810238913.png)
(1)x=a+(t
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/201408232308105042019.png)
由x⊥y,得x·y=0,即(-2t
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/201408232308100981188.png)
整理得k=
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823230810114604.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823230810145169.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823230810114604.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823230810192442.png)
所以k的最小值为2.
(2)假设存在正实数k,t使x∥y,则(-2t
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823230809583242.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823230810238913.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823230809583242.png)
满足上述等式的正实数k、t不存在,所以不存在正实数k、t,使x∥y.
![](http://thumb.zyjl.cn/images/loading.gif)
练习册系列答案
相关题目