题目内容
【题目】过动点P作圆:(x﹣3)2+(y﹣4)2=1的切线PQ,其中Q为切点,若|PQ|=|PO|(O为坐标原点),则|PQ|的最小值是 .
【答案】
【解析】解:根据题意,设P的坐标为(m,n),圆(x﹣3)2+(y﹣4)2=1的圆心为N,则N(3,4) PQ为圆(x﹣3)2+(y﹣4)2=1的切线,则有|PN|2=|PQ|2+|NQ|2=|PQ|2+1,
又由|PQ|=|PO|,
则有|PN|2=|PO|2+1,
即(m﹣3)2+(n﹣4)2=m2+n2+1,
变形可得:6m+8n=24,
即P在直线6x+8y=24上,
则|PQ|的最小值即点O到直线6x+8y=24的距离,
且d= = ;
即|PQ|的最小值是 ;
所以答案是: .
练习册系列答案
相关题目