题目内容
【题目】已知函数 的定义域为R.
(Ⅰ)求实数m的范围;
(Ⅱ)若m的最大值为n,当正数a,b满足 时,求4a+7b的最小值.
【答案】解:(Ⅰ)∵函数的定义域为R,|x+2|+|x﹣4|≥|(x+2)﹣(x﹣4)|=6,∴m≤6. (Ⅱ)由(Ⅰ)知n=6,由柯西不等式知,4a+7b= = ,当且仅当 时取等号,∴4a+7b的最小值为
【解析】(I)利用绝对值不等式的性质即可得出.(II)利用柯西不等式的性质即可得出.
【考点精析】解答此题的关键在于理解函数的定义域及其求法的相关知识,掌握求函数的定义域时,一般遵循以下原则:①是整式时,定义域是全体实数;②是分式函数时,定义域是使分母不为零的一切实数;③是偶次根式时,定义域是使被开方式为非负值时的实数的集合;④对数函数的真数大于零,当对数或指数函数的底数中含变量时,底数须大于零且不等于1,零(负)指数幂的底数不能为零,以及对绝对值不等式的解法的理解,了解含绝对值不等式的解法:定义法、平方法、同解变形法,其同解定理有;规律:关键是去掉绝对值的符号.
【题目】棉花的纤维长度是评价棉花质量的重要指标,某农科所的专家在土壤环境不同的甲、乙两块实验地分别种植某品种的棉花,为了评价该品种的棉花质量,在棉花成熟后,分别从甲、乙两地的棉花中各随机抽取20根棉花纤维进行统计,结果如下表:(记纤维长度不低于300mm的为“长纤维”,其余为“短纤维”)
纤维长度 | (0,100) | [100,200) | [200,300) | [300,400) | [400,500] |
甲地(根数) | 3 | 4 | 4 | 5 | 4 |
乙地(根数) | 1 | 1 | 2 | 10 | 6 |
(1)由以上统计数据,填写下面2×2列联表,并判断能否在犯错误概率不超过0.025的前提下认为“纤维长度与土壤环境有关系”.
甲地 | 乙地 | 总计 | |
长纤维 | |||
短纤维 | |||
总计 |
附:(1) ;(2)临界值表;
P(K2≥k0) | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 |
k0 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
(2)现从上述40根纤维中,按纤维长度是否为“长纤维”还是“短纤维”采用分层抽样的方法抽取8根进行检测,在这8根纤维中,记乙地“短纤维”的根数为X,求X的分布列及数学期望.
【题目】春节期间,受烟花爆竹集中燃放影响,我国多数城市空气中PM2.5浓度快速上升,特别是在大气扩散条件不利的情况下,空气质量在短时间内会迅速恶化.2017年除夕18时和初一2时,国家环保部门对8个城市空气中PM2.5浓度监测的数据如表(单位:微克/立方米).
除夕18时PM2.5浓度 | 初一2时PM2.5浓度 | |
北京 | 75 | 647 |
天津 | 66 | 400 |
石家庄 | 89 | 375 |
廊坊 | 102 | 399 |
太原 | 46 | 115 |
上海 | 16 | 17 |
南京 | 35 | 44 |
杭州 | 131 | 39 |
(Ⅰ)求这8个城市除夕18时空气中PM2.5浓度的平均值;
(Ⅱ)环保部门发现:除夕18时到初一2时空气中PM2.5浓度上升不超过100的城市都是“禁止燃放烟花爆竹“的城市,浓度上升超过100的城市都未禁止燃放烟花爆竹.从以上8个城市中随机选取3个城市组织专家进行调研,记选到“禁止燃放烟花爆竹”的城市个数为X,求随机变量y的分布列和数学期望;
(Ⅲ)记2017年除夕18时和初一2时以上8个城市空气中PM2.5浓度的方差分别为s12和s22 , 比较s12和s22的大小关系(只需写出结果).