题目内容
10.已知x,y满足-1≤x+2y≤3,0≤2x-y≤2.(1)求x+y的取值范围;
(2)求x-y的取值范围.
分析 (1)设x+y=m(x+2y)+n(2x-y),求出m.n,利用不等式的性质进行求解;
(2)设x-y=m(x+2y)+n(2x-y),求出m.n,利用不等式的性质进行求解.
解答 解:(1)设x+y=m(x+2y)+n(2x-y),
则x+y=(m+2n)x+(2m-n)y,
即$\left\{\begin{array}{l}{m+2n=1}\\{2m-n=1}\end{array}\right.$,解得$\left\{\begin{array}{l}{m=\frac{3}{5}}\\{n=\frac{1}{5}}\end{array}\right.$,
即x+y=$\frac{3}{5}$(x+2y)+$\frac{1}{5}$(2x-y),
∵-1≤x+2y≤3,0≤2x-y≤2.
∴-$\frac{3}{5}$≤$\frac{3}{5}$(x+2y)≤$\frac{9}{5}$,0≤$\frac{1}{5}$(2x-y)≤$\frac{2}{5}$.
则-$\frac{3}{5}$≤$\frac{3}{5}$(x+2y)+$\frac{1}{5}$(2x-y)≤$\frac{11}{5}$,
即x+y的取值范围是[-$\frac{3}{5}$,$\frac{11}{5}$];
(2)设x-y=m(x+2y)+n(2x-y),
则x-y=(m+2n)x+(2m-n)y,
即$\left\{\begin{array}{l}{m+2n=1}\\{2m-n=-1}\end{array}\right.$,解得$\left\{\begin{array}{l}{m=-\frac{1}{5}}\\{n=\frac{3}{5}}\end{array}\right.$,
即x+y=-$\frac{1}{5}$(x+2y)+$\frac{3}{5}$(2x-y),
∵-1≤x+2y≤3,0≤2x-y≤2.
∴-$\frac{3}{5}$≤-$\frac{1}{5}$(x+2y)≤$\frac{1}{5}$,0≤$\frac{3}{5}$(2x-y)≤$\frac{6}{5}$.
则-$\frac{3}{5}$≤-$\frac{1}{5}$(x+2y)+$\frac{3}{5}$(2x-y)≤$\frac{7}{5}$,
即x-y的取值范围是[-$\frac{3}{5}$,$\frac{7}{5}$].
点评 本题主要考查不等式范围的求解,根据不等式的性质,利用待定系数法是解决本题的关键.
甲 | 乙 | 丙 | |
A(单位/千克) | 400 | 600 | 400 |
B(单位/千克) | 800 | 200 | 400 |
成本 | 7 | 6 | 5 |