题目内容

1.F1,F2是椭圆的两个焦点,过F2的直线交椭圆于P,Q两点,PF1⊥PQ,且PF1=PQ,求椭圆的离心率.

分析 设|PF1|=t,则|PQ|=t,|F1Q|=$\sqrt{2}$t,根据椭圆定义可知|PF1|+|PF2|=|QF1|+|QF2|=2a,进而得|PF1|+|PQ|+|F1Q|=4a,求得|PF2|关于t的表达式,进而利用韦达定理可知[(4-2$\sqrt{2}$)a]2+[(2$\sqrt{2}$-2)a]2=(2c)2求得a和c的关系.

解答 解:设|PF1|=t,则|PQ|=t,|F1Q|=$\sqrt{2}$t,由椭圆定义有:|PF1|+|PF2|=|QF1|+|QF2|=2a
∴|PF1|+|PQ|+|F1Q|=4a,
化简得($\sqrt{2}$+2)t=4a,t=(4-2$\sqrt{2}$)a
∴|PF2|=2a-t=(2$\sqrt{2}$-2)a
在Rt△PF1F2中,|F1F2|2=(2c)2
∴[(4-2$\sqrt{2}$)a]2+[(2$\sqrt{2}$-2)a]2=(2c)2
∴($\frac{c}{a}$)2=9-6$\sqrt{2}$
∴e=$\sqrt{6}$-$\sqrt{3}$.

点评 本题主要考查了椭圆的简单性质,考查了学生对椭圆定义的理解和运用.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网